Soft Matching Distance: A metric on neural representations that captures
single-neuron tuning
- URL: http://arxiv.org/abs/2311.09466v1
- Date: Thu, 16 Nov 2023 00:13:00 GMT
- Title: Soft Matching Distance: A metric on neural representations that captures
single-neuron tuning
- Authors: Meenakshi Khosla and Alex H. Williams
- Abstract summary: Common measures of neural representational (dis)similarity are designed to be insensitive to rotations and reflections of the neural activation space.
We propose a new metric to measure distances between networks with different sizes.
- Score: 6.5714523708869566
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Common measures of neural representational (dis)similarity are designed to be
insensitive to rotations and reflections of the neural activation space.
Motivated by the premise that the tuning of individual units may be important,
there has been recent interest in developing stricter notions of
representational (dis)similarity that require neurons to be individually
matched across networks. When two networks have the same size (i.e. same number
of neurons), a distance metric can be formulated by optimizing over neuron
index permutations to maximize tuning curve alignment. However, it is not clear
how to generalize this metric to measure distances between networks with
different sizes. Here, we leverage a connection to optimal transport theory to
derive a natural generalization based on "soft" permutations. The resulting
metric is symmetric, satisfies the triangle inequality, and can be interpreted
as a Wasserstein distance between two empirical distributions. Further, our
proposed metric avoids counter-intuitive outcomes suffered by alternative
approaches, and captures complementary geometric insights into neural
representations that are entirely missed by rotation-invariant metrics.
Related papers
- What Representational Similarity Measures Imply about Decodable Information [6.5879381737929945]
We show that some neural network similarity measures can be equivalently motivated from a decoding perspective.
Measures like CKA and CCA quantify the average alignment between optimal linear readouts across a distribution of decoding tasks.
Overall, our work demonstrates a tight link between the geometry of neural representations and the ability to linearly decode information.
arXiv Detail & Related papers (2024-11-12T21:37:10Z) - Metric Convolutions: A Unifying Theory to Adaptive Convolutions [3.481985817302898]
Metric convolutions replace standard convolutions in image processing and deep learning.
They require fewer parameters and provide better generalisation.
Our approach shows competitive performance in standard denoising and classification tasks.
arXiv Detail & Related papers (2024-06-08T08:41:12Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Symmetry Breaking and Equivariant Neural Networks [17.740760773905986]
We introduce a novel notion of'relaxed equiinjection'
We show how to incorporate this relaxation into equivariant multilayer perceptronrons (E-MLPs)
The relevance of symmetry breaking is then discussed in various application domains.
arXiv Detail & Related papers (2023-12-14T15:06:48Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
The present work describes multilayer multiset neuronal networks incorporating two or more layers of coincidence similarity neurons.
The work also explores the utilization of counter-prototype points, which are assigned to the image regions to be avoided.
arXiv Detail & Related papers (2023-08-28T12:55:13Z) - Scalable Stochastic Gradient Riemannian Langevin Dynamics in Non-Diagonal Metrics [3.8811062755861956]
We propose two non-diagonal metrics that can be used in-gradient samplers to improve convergence and exploration.
We show that for fully connected neural networks (NNs) with sparsity-inducing priors and convolutional NNs with correlated priors, using these metrics can provide improvements.
arXiv Detail & Related papers (2023-03-09T08:20:28Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
This work studies the design of neural networks that can process the weights or gradients of other neural networks.
We focus on the permutation symmetries that arise in the weights of deep feedforward networks because hidden layer neurons have no inherent order.
In our experiments, we find that permutation equivariant neural functionals are effective on a diverse set of tasks.
arXiv Detail & Related papers (2023-02-27T18:52:38Z) - Representational dissimilarity metric spaces for stochastic neural
networks [4.229248343585332]
Quantifying similarity between neural representations is a perennial problem in deep learning and neuroscience research.
We generalize shape metrics to quantify differences in representations.
We find that neurobiological oriented visual gratings and naturalistic scenes respectively resemble untrained and trained deep network representations.
arXiv Detail & Related papers (2022-11-21T17:32:40Z) - Revisiting Transformation Invariant Geometric Deep Learning: Are Initial
Representations All You Need? [80.86819657126041]
We show that transformation-invariant and distance-preserving initial representations are sufficient to achieve transformation invariance.
Specifically, we realize transformation-invariant and distance-preserving initial point representations by modifying multi-dimensional scaling.
We prove that TinvNN can strictly guarantee transformation invariance, being general and flexible enough to be combined with the existing neural networks.
arXiv Detail & Related papers (2021-12-23T03:52:33Z) - The Separation Capacity of Random Neural Networks [78.25060223808936]
We show that a sufficiently large two-layer ReLU-network with standard Gaussian weights and uniformly distributed biases can solve this problem with high probability.
We quantify the relevant structure of the data in terms of a novel notion of mutual complexity.
arXiv Detail & Related papers (2021-07-31T10:25:26Z) - Optimizing Mode Connectivity via Neuron Alignment [84.26606622400423]
Empirically, the local minima of loss functions can be connected by a learned curve in model space along which the loss remains nearly constant.
We propose a more general framework to investigate effect of symmetry on landscape connectivity by accounting for the weight permutations of networks being connected.
arXiv Detail & Related papers (2020-09-05T02:25:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.