A Meta Logarithmic-Sobolev Inequality for Phase-Covariant Gaussian Channels
- URL: http://arxiv.org/abs/2311.09572v2
- Date: Sat, 28 Sep 2024 04:27:46 GMT
- Title: A Meta Logarithmic-Sobolev Inequality for Phase-Covariant Gaussian Channels
- Authors: Salman Beigi, Saleh Rahimi-Keshari,
- Abstract summary: We show that our inequality provides a general framework to derive information theoretic results regarding phase-covariant Gaussian channels.
Specifically, we explicitly compute the optimal constant $alpha_p$, for $1leq pleq 2$, of the $p$-log-Sobolev inequality associated to the quantum Ornstein-Uhlenbeck semigroup.
- Score: 3.130722489512822
- License:
- Abstract: We introduce a meta logarithmic-Sobolev (log-Sobolev) inequality for the Lindbladian of all single-mode phase-covariant Gaussian channels of bosonic quantum systems, and prove that this inequality is saturated by thermal states. We show that our inequality provides a general framework to derive information theoretic results regarding phase-covariant Gaussian channels. Specifically, by using the optimality of thermal states, we explicitly compute the optimal constant $\alpha_p$, for $1\leq p\leq 2$, of the $p$-log-Sobolev inequality associated to the quantum Ornstein-Uhlenbeck semigroup. Prior to our work, the optimal constant was only determined for $p=1$. Our meta log-Sobolev inequality also enables us to provide an alternative proof for the constrained minimum output entropy conjecture in the single-mode case. Specifically, we show that for any single-mode phase-covariant Gaussian channel $\Phi$, the minimum of the von Neumann entropy $S\big(\Phi(\rho)\big)$ over all single-mode states $\rho$ with a given lower bound on $S(\rho)$, is achieved at a thermal state.
Related papers
- Optimal convergence rates in trace distance and relative entropy for the quantum central limit theorem [2.7855886538423182]
We show that for a centered $m$-mode quantum state with finite third-order moments, the trace distance between $rhoboxplus n$ and $rho_G$ decays at the optimal rate of $mathcalO(n-1/2)$.
For states with finite fourth-order moments, we prove that the relative entropy between $rhoboxplus n$ and $rho_G$ decays at the optimal rate of $mathcalO(n-1)$.
arXiv Detail & Related papers (2024-10-29T12:35:47Z) - Further Understanding of a Local Gaussian Process Approximation: Characterising Convergence in the Finite Regime [1.3518297878940662]
We show that common choices of kernel functions for a highly accurate and massively scalable GPnn regression model exhibit gradual convergence to behaviour as dataset-size $n$ increases.
Similar bounds can be found under model misspecification and combined to give overall rates of convergence of both MSE and an important calibration metric.
arXiv Detail & Related papers (2024-04-09T10:47:01Z) - The $φ^n$ trajectory bootstrap [1.8855270809505869]
We show that the non-integer $n$ results for $langlephinrangle$ or $langle(iphi)nrangle$ are consistent with those from the wave function approach.
In the $mathcalPT$ invariant case, the existence of $langle(iphi)nrangle$ with non-integer $n$ allows us to bootstrap the non-Hermitian theories with non-integer powers.
arXiv Detail & Related papers (2024-02-08T16:09:06Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Smooth min-entropy lower bounds for approximation chains [0.0]
We prove a simple entropic triangle inequality, which allows us to bound the smooth min-entropy of a state in terms of the R'enyi entropy of an arbitrary auxiliary state.
Using this triangle inequality, we create lower bounds for the smooth min-entropy of a state in terms of the entropies of its approximation chain in various scenarios.
arXiv Detail & Related papers (2023-08-22T18:55:16Z) - A generic quantum Wielandt's inequality [0.9975341265604578]
It is conjectured that $k$ should be of order $mathcalO(n2)$ in general.
We provide a generic version of quantum Wielandt's inequality, which gives the optimal length with probability one.
We shed new light on a long-standing open problem for Projected Entangled Pair State.
arXiv Detail & Related papers (2023-01-19T18:57:32Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
The threshold theorem is a fundamental result in the theory of fault-tolerant quantum computation.
We prove an exponential upper bound on the maximal length of fault-tolerant quantum computation with amplitude noise.
arXiv Detail & Related papers (2022-01-31T22:19:49Z) - Random quantum circuits transform local noise into global white noise [118.18170052022323]
We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime.
For local noise that is sufficiently weak and unital, correlations (measured by the linear cross-entropy benchmark) between the output distribution $p_textnoisy$ of a generic noisy circuit instance shrink exponentially.
If the noise is incoherent, the output distribution approaches the uniform distribution $p_textunif$ at precisely the same rate.
arXiv Detail & Related papers (2021-11-29T19:26:28Z) - Sample Complexity of Asynchronous Q-Learning: Sharper Analysis and
Variance Reduction [63.41789556777387]
Asynchronous Q-learning aims to learn the optimal action-value function (or Q-function) of a Markov decision process (MDP)
We show that the number of samples needed to yield an entrywise $varepsilon$-accurate estimate of the Q-function is at most on the order of $frac1mu_min (1-gamma)5varepsilon2+ fract_mixmu_min (1-gamma)$ up to some logarithmic factor.
arXiv Detail & Related papers (2020-06-04T17:51:00Z) - Spectral density estimation with the Gaussian Integral Transform [91.3755431537592]
spectral density operator $hatrho(omega)=delta(omega-hatH)$ plays a central role in linear response theory.
We describe a near optimal quantum algorithm providing an approximation to the spectral density.
arXiv Detail & Related papers (2020-04-10T03:14:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.