Experimental distillation of tripartite quantum steering with an optimal local filtering operation
- URL: http://arxiv.org/abs/2311.09873v2
- Date: Tue, 25 Jun 2024 10:21:42 GMT
- Title: Experimental distillation of tripartite quantum steering with an optimal local filtering operation
- Authors: Qian-Xi Zhang, Xiao-Xu Fang, He Lu,
- Abstract summary: Multipartite Einstein-Podolsky-Rosen(EPR) steering admits multipartite entanglement in the presence of uncharacterized verifiers.
We propose a local filtering operation that can distill genuine tripartite EPR steering from copies of three-qubit generalized Greenberger-Horne-Zeilinger states.
- Score: 1.7842332554022695
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multipartite Einstein-Podolsky-Rosen~(EPR) steering admits multipartite entanglement in the presence of uncharacterized verifiers, enabling practical applications in semi-device-independent protocols. Such applications generally require stronger steerability, while the unavoidable noise weakens steerability and consequently degrades the performance of quantum information processing. Here, we propose the local filtering operation that can maximally distill genuine tripartite EPR steering from $N$ copies of three-qubit generalized Greenberger-Horne-Zeilinger states, in the context of two semi-device-independent scenarios. The optimal filtering operation is determined by the maximization of assemblage fidelity. Analytical and numerical results indicate the advantage of proposed filtering operation when $N$ is finite and the steerability of initial assemblages is weak. Experimentally, a proof-of-principle demonstration of two-copy distillation is realized with optical system. The advantage of optimal local filtering operation is confirmed by the distilled assemblage in terms of higher assemblage fidelity with perfectly genuine tripartite steerable assemblages, as well as the greater violation of the inequality to witness genuine tripartite steerable assemblages. Our results benefit the distillation of multipartite EPR steering in practice, where the number of copies of initial assemblages is generally finite.
Related papers
- Entanglement Distribution Delay Optimization in Quantum Networks with Distillation [51.53291671169632]
Quantum networks (QNs) distribute entangled states to enable distributed quantum computing and sensing applications.
QS resource allocation framework is proposed to enhance the end-to-end (e2e) fidelity and satisfy minimum rate and fidelity requirements.
arXiv Detail & Related papers (2024-05-15T02:04:22Z) - Qubit Recycling in Entanglement Distillation [9.015066103692337]
Quantum entanglement distillation is a process to extract a small number of high-fidelity entanglement from a large number of low-fidelity ones.
Gisin's local filtering protocol is commonly adopted in photonic quantum systems for distilling entangled photons in polarization basis.
We propose a protocol to recycle the disposed photons and improve their fidelity by a designed (and optimized) local operator.
arXiv Detail & Related papers (2023-07-11T18:11:06Z) - Optimal State Manipulation for a Two-Qubit System Driven by Coherent and
Incoherent Controls [77.34726150561087]
State preparation is important for optimal control of two-qubit quantum systems.
We exploit two physically different coherent control and optimize the Hilbert-Schmidt target density matrices.
arXiv Detail & Related papers (2023-04-03T10:22:35Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Device-independent certification of maximal randomness from pure
entangled two-qutrit states using non-projective measurements [0.0]
We introduce a method for device-independent certification of the maximal possible amount of $2log_23$ random bits.
We exploit the extended Bell scenario introduced recently in [S. Sarkar et al., arXiv:2110.15176], which combines a device-independent method for certification of the full Weyl-Heisenberg basis in three-dimensional Hilbert spaces.
arXiv Detail & Related papers (2022-01-21T11:25:58Z) - Complete classification of steerability under local filters and its
relation with measurement incompatibility [0.0]
We provide a necessary and sufficient condition for a steering assemblage to be transformable into another one via local filtering.
We show that there always exists a bipartite state that provides an assemblage with steerability equal to the incompatibility of the measurements on the trusted party.
arXiv Detail & Related papers (2022-01-19T16:22:01Z) - Self-testing of any pure entangled state with minimal number of
measurements and optimal randomness certification in one-sided
device-independent scenario [0.0]
certification of quantum systems and their properties has become a field of intensive studies.
We propose a self-testing scheme for all bipartite entangled states using a single family of steering inequalities with the minimal number of two measurements per party.
arXiv Detail & Related papers (2021-10-28T14:54:08Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Distillation of genuine tripartite Einstein-Podolsky-Rosen steering [0.9003129159179886]
We show that a perfectly genuine tripartite EPR steerable assemblage can be distilled from partially genuine assemblages.
We show that at least one copy of a perfectly genuine steerable assemblage can be distilled with certainty from infinitely many copies of initial assemblages.
arXiv Detail & Related papers (2020-10-19T04:48:07Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - An Information Bottleneck Approach for Controlling Conciseness in
Rationale Extraction [84.49035467829819]
We show that it is possible to better manage this trade-off by optimizing a bound on the Information Bottleneck (IB) objective.
Our fully unsupervised approach jointly learns an explainer that predicts sparse binary masks over sentences, and an end-task predictor that considers only the extracted rationale.
arXiv Detail & Related papers (2020-05-01T23:26:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.