Deep Learning based CNN Model for Classification and Detection of
Individuals Wearing Face Mask
- URL: http://arxiv.org/abs/2311.10408v1
- Date: Fri, 17 Nov 2023 09:24:04 GMT
- Title: Deep Learning based CNN Model for Classification and Detection of
Individuals Wearing Face Mask
- Authors: R. Chinnaiyan, Iyyappan M, Al Raiyan Shariff A, Kondaveeti Sai,
Mallikarjunaiah B M, P Bharath
- Abstract summary: This project utilizes deep learning to create a model that can detect face masks in real-time streaming video as well as images.
The primary focus of this research is to enhance security, particularly in sensitive areas.
The research unfolds in three stages: image pre-processing, image cropping, and image classification.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In response to the global COVID-19 pandemic, there has been a critical demand
for protective measures, with face masks emerging as a primary safeguard. The
approach involves a two-fold strategy: first, recognizing the presence of a
face by detecting faces, and second, identifying masks on those faces. This
project utilizes deep learning to create a model that can detect face masks in
real-time streaming video as well as images. Face detection, a facet of object
detection, finds applications in diverse fields such as security, biometrics,
and law enforcement. Various detector systems worldwide have been developed and
implemented, with convolutional neural networks chosen for their superior
performance accuracy and speed in object detection. Experimental results attest
to the model's excellent accuracy on test data. The primary focus of this
research is to enhance security, particularly in sensitive areas. The research
paper proposes a rapid image pre-processing method with masks centred on faces.
Employing feature extraction and Convolutional Neural Network, the system
classifies and detects individuals wearing masks. The research unfolds in three
stages: image pre-processing, image cropping, and image classification,
collectively contributing to the identification of masked faces. Continuous
surveillance through webcams or CCTV cameras ensures constant monitoring,
triggering a security alert if a person is detected without a mask.
Related papers
- Seeing through the Mask: Multi-task Generative Mask Decoupling Face
Recognition [47.248075664420874]
Current general face recognition system suffers from serious performance degradation when encountering occluded scenes.
This paper proposes a Multi-task gEnerative mask dEcoupling face Recognition (MEER) network to jointly handle these two tasks.
We first present a novel mask decoupling module to disentangle mask and identity information, which makes the network obtain purer identity features from visible facial components.
arXiv Detail & Related papers (2023-11-20T03:23:03Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
Face forgery generation technologies generate vivid faces, which have raised public concerns about security and privacy.
Although face forgery detection has successfully distinguished fake faces, recent studies have demonstrated that face forgery detectors are very vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-10-18T14:49:54Z) - An Exploratory Study of Masked Face Recognition with Machine Learning
Algorithms [0.0]
Using face masks have become crucial in our daily life with the recent world-wide COVID-19 pandemic.
The effect of mask-wearing in face recognition is yet an understudied issue.
We use six conventional machine learning algorithms, which are SVC, KNN, LDA, DT, LR and NB, to find out the ones which perform best.
arXiv Detail & Related papers (2023-06-14T14:50:23Z) - A Survey on Masked Facial Detection Methods and Datasets for Fighting
Against COVID-19 [64.88701052813462]
Coronavirus disease 2019 (COVID-19) continues to pose a great challenge to the world since its outbreak.
To fight against the disease, a series of artificial intelligence (AI) techniques are developed and applied to real-world scenarios.
In this paper, we primarily focus on the AI techniques of masked facial detection and related datasets.
arXiv Detail & Related papers (2022-01-13T03:28:20Z) - Development of a face mask detection pipeline for mask-wearing
monitoring in the era of the COVID-19 pandemic: A modular approach [0.0]
During the SARS-Cov-2 pandemic, mask-wearing became an effective tool to prevent spreading and contracting the virus.
The ability to monitor the mask-wearing rate in the population would be useful for determining public health strategies against the virus.
We present a two-step face mask detection approach consisting of two separate modules: 1) face detection and alignment and 2) face mask classification.
arXiv Detail & Related papers (2021-12-30T12:32:33Z) - Mask or Non-Mask? Robust Face Mask Detector via Triplet-Consistency
Representation Learning [23.062034116854875]
In the absence of vaccines or medicines to stop COVID-19, one of the effective methods to slow the spread of the coronavirus is to wear a face mask.
To mandate the use of face masks or coverings in public areas, additional human resources are required, which is tedious and attention-intensive.
We propose a face mask detection framework that uses the context attention module to enable the effective attention of the feed-forward convolution neural network.
arXiv Detail & Related papers (2021-10-01T16:44:06Z) - End2End Occluded Face Recognition by Masking Corrupted Features [82.27588990277192]
State-of-the-art general face recognition models do not generalize well to occluded face images.
This paper presents a novel face recognition method that is robust to occlusions based on a single end-to-end deep neural network.
Our approach, named FROM (Face Recognition with Occlusion Masks), learns to discover the corrupted features from the deep convolutional neural networks, and clean them by the dynamically learned masks.
arXiv Detail & Related papers (2021-08-21T09:08:41Z) - Contrastive Context-Aware Learning for 3D High-Fidelity Mask Face
Presentation Attack Detection [103.7264459186552]
Face presentation attack detection (PAD) is essential to secure face recognition systems.
Most existing 3D mask PAD benchmarks suffer from several drawbacks.
We introduce a largescale High-Fidelity Mask dataset to bridge the gap to real-world applications.
arXiv Detail & Related papers (2021-04-13T12:48:38Z) - Deep Learning Framework to Detect Face Masks from Video Footage [0.0]
We propose an approach for detecting facial masks in videos using deep learning.
The proposed framework capitalizes on the MTCNN face detection model to identify the faces and their corresponding facial landmarks present in the video frame.
The proposed methodology demonstrated its effectiveness in detecting facial masks by achieving high precision, recall, and accuracy.
arXiv Detail & Related papers (2020-11-04T16:02:03Z) - Face Anti-Spoofing by Learning Polarization Cues in a Real-World
Scenario [50.36920272392624]
Face anti-spoofing is the key to preventing security breaches in biometric recognition applications.
Deep learning method using RGB and infrared images demands a large amount of training data for new attacks.
We present a face anti-spoofing method in a real-world scenario by automatic learning the physical characteristics in polarization images of a real face.
arXiv Detail & Related papers (2020-03-18T03:04:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.