Active Inference on the Edge: A Design Study
- URL: http://arxiv.org/abs/2311.10607v1
- Date: Fri, 17 Nov 2023 16:03:04 GMT
- Title: Active Inference on the Edge: A Design Study
- Authors: Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, Schahram
Dustdar
- Abstract summary: Active Inference (ACI) is a concept from neuroscience that describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise.
We show how our ACI agent was able to quickly and traceably solve an optimization problem while fulfilling requirements.
- Score: 5.815300670677979
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine Learning (ML) is a common tool to interpret and predict the behavior
of distributed computing systems, e.g., to optimize the task distribution
between devices. As more and more data is created by Internet of Things (IoT)
devices, data processing and ML training are carried out by edge devices in
close proximity. To ensure Quality of Service (QoS) throughout these
operations, systems are supervised and dynamically adapted with the help of ML.
However, as long as ML models are not retrained, they fail to capture gradual
shifts in the variable distribution, leading to an inaccurate view of the
system state. Moreover, as the prediction accuracy decreases, the reporting
device should actively resolve uncertainties to improve the model's precision.
Such a level of self-determination could be provided by Active Inference (ACI)
-- a concept from neuroscience that describes how the brain constantly predicts
and evaluates sensory information to decrease long-term surprise. We
encompassed these concepts in a single action-perception cycle, which we
implemented for distributed agents in a smart manufacturing use case. As a
result, we showed how our ACI agent was able to quickly and traceably solve an
optimization problem while fulfilling QoS requirements.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Adaptive Stream Processing on Edge Devices through Active Inference [5.5676731834895765]
We present a novel Machine Learning paradigm based on Active Inference (AIF)
AIF describes how the brain constantly predicts and evaluates sensory information to decrease long-term surprise.
Our method guarantees full transparency on the decision making, making the interpretation of the results and the troubleshooting effortless.
arXiv Detail & Related papers (2024-09-26T15:12:41Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Comprehensive Study Of Predictive Maintenance In Industries Using Classification Models And LSTM Model [0.0]
The study aims to delve into various machine learning classification techniques, including Support Vector Machine (SVM), Random Forest, Logistic Regression, and Convolutional Neural Network LSTM-Based, for predicting and analyzing machine performance.
The primary objective of the study is to assess these algorithms' performance in predicting and analyzing machine performance, considering factors such as accuracy, precision, recall, and F1 score.
arXiv Detail & Related papers (2024-03-15T12:47:45Z) - Task-Aware Machine Unlearning and Its Application in Load Forecasting [4.00606516946677]
This paper introduces the concept of machine unlearning which is specifically designed to remove the influence of part of the dataset on an already trained forecaster.
A performance-aware algorithm is proposed by evaluating the sensitivity of local model parameter change using influence function and sample re-weighting.
We tested the unlearning algorithms on linear, CNN, andMixer based load forecasters with a realistic load dataset.
arXiv Detail & Related papers (2023-08-28T08:50:12Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
We introduce an interpretable paradigm for trajectory prediction that distributes the uncertainty among semantic concepts.
We validate our approach on real-world autonomous driving data, demonstrating superior performance over state-of-the-art baselines.
arXiv Detail & Related papers (2022-11-16T06:28:20Z) - Multi-Agent Reinforcement Learning for Long-Term Network Resource
Allocation through Auction: a V2X Application [7.326507804995567]
We formulate offloading of computational tasks from a dynamic group of mobile agents (e.g., cars) as decentralized decision making among autonomous agents.
We design an interaction mechanism that incentivizes such agents to align private and system goals by balancing between competition and cooperation.
We propose a novel multi-agent online learning algorithm that learns with partial, delayed and noisy state information.
arXiv Detail & Related papers (2022-07-29T10:29:06Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Interpretable AI-based Large-scale 3D Pathloss Prediction Model for
enabling Emerging Self-Driving Networks [3.710841042000923]
We propose a Machine Learning-based model that leverages novel key predictors for estimating pathloss.
By quantitatively evaluating the ability of various ML algorithms in terms of predictive, generalization and computational performance, our results show that Light Gradient Boosting Machine (LightGBM) algorithm overall outperforms others.
arXiv Detail & Related papers (2022-01-30T19:50:16Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Fast-Convergent Federated Learning [82.32029953209542]
Federated learning is a promising solution for distributing machine learning tasks through modern networks of mobile devices.
We propose a fast-convergent federated learning algorithm, called FOLB, which performs intelligent sampling of devices in each round of model training.
arXiv Detail & Related papers (2020-07-26T14:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.