Optimal Embedding Dimension for Sparse Subspace Embeddings
- URL: http://arxiv.org/abs/2311.10680v2
- Date: Thu, 6 Jun 2024 02:57:38 GMT
- Title: Optimal Embedding Dimension for Sparse Subspace Embeddings
- Authors: Shabarish Chenakkod, Michał Dereziński, Xiaoyu Dong, Mark Rudelson,
- Abstract summary: A random $mtimes n$ matrix $S$ is an oblivious subspace embedding (OSE)
We show that an $mtimes n$ random matrix $S$ with $mgeq (1+theta)d$ is an oblivious subspace embedding with $epsilon = O_theta(1)$.
We use this to construct the first oblivious subspace embedding with $O(d)$ embedding dimension that can be applied faster than current matrix multiplication time.
- Score: 4.042707434058959
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A random $m\times n$ matrix $S$ is an oblivious subspace embedding (OSE) with parameters $\epsilon>0$, $\delta\in(0,1/3)$ and $d\leq m\leq n$, if for any $d$-dimensional subspace $W\subseteq R^n$, $P\big(\,\forall_{x\in W}\ (1+\epsilon)^{-1}\|x\|\leq\|Sx\|\leq (1+\epsilon)\|x\|\,\big)\geq 1-\delta.$ It is known that the embedding dimension of an OSE must satisfy $m\geq d$, and for any $\theta > 0$, a Gaussian embedding matrix with $m\geq (1+\theta) d$ is an OSE with $\epsilon = O_\theta(1)$. However, such optimal embedding dimension is not known for other embeddings. Of particular interest are sparse OSEs, having $s\ll m$ non-zeros per column, with applications to problems such as least squares regression and low-rank approximation. We show that, given any $\theta > 0$, an $m\times n$ random matrix $S$ with $m\geq (1+\theta)d$ consisting of randomly sparsified $\pm1/\sqrt s$ entries and having $s= O(\log^4(d))$ non-zeros per column, is an oblivious subspace embedding with $\epsilon = O_{\theta}(1)$. Our result addresses the main open question posed by Nelson and Nguyen (FOCS 2013), who conjectured that sparse OSEs can achieve $m=O(d)$ embedding dimension, and it improves on $m=O(d\log(d))$ shown by Cohen (SODA 2016). We use this to construct the first oblivious subspace embedding with $O(d)$ embedding dimension that can be applied faster than current matrix multiplication time, and to obtain an optimal single-pass algorithm for least squares regression. We further extend our results to Leverage Score Sparsification (LESS), which is a recently introduced non-oblivious embedding technique. We use LESS to construct the first subspace embedding with low distortion $\epsilon=o(1)$ and optimal embedding dimension $m=O(d/\epsilon^2)$ that can be applied in current matrix multiplication time.
Related papers
- LevAttention: Time, Space, and Streaming Efficient Algorithm for Heavy Attentions [54.54897832889028]
We show that for any $K$, there is a universal set" $U subset [n]$ of size independent of $n$, such that for any $Q$ and any row $i$, the large attention scores $A_i,j$ in row $i$ of $A$ all have $jin U$.
We empirically show the benefits of our scheme for vision transformers, showing how to train new models that use our universal set while training as well.
arXiv Detail & Related papers (2024-10-07T19:47:13Z) - Optimal Sketching for Residual Error Estimation for Matrix and Vector Norms [50.15964512954274]
We study the problem of residual error estimation for matrix and vector norms using a linear sketch.
We demonstrate that this gives a substantial advantage empirically, for roughly the same sketch size and accuracy as in previous work.
We also show an $Omega(k2/pn1-2/p)$ lower bound for the sparse recovery problem, which is tight up to a $mathrmpoly(log n)$ factor.
arXiv Detail & Related papers (2024-08-16T02:33:07Z) - Krylov Methods are (nearly) Optimal for Low-Rank Approximation [8.017116107657206]
We show that any algorithm requires $Omegaleft(log(n)/varepsilon1/2right)$ matrix-vector products, exactly matching the upper bound obtained by Krylov methods.
Our lower bound addresses Open Question 1WooWoo14, providing evidence for the lack of progress on algorithms for Spectral LRA.
arXiv Detail & Related papers (2023-04-06T16:15:19Z) - Sparse Dimensionality Reduction Revisited [13.170012290527017]
The sparse Johnson-Lindenstrauss transform is one of the central techniques in dimensionality reduction.
We revisit sparse embeddings and identify a loophole in the lower bound.
We also improve the sparsity of the best oblivious subspace embeddings for optimal embedding dimensionality.
arXiv Detail & Related papers (2023-02-13T08:01:25Z) - Sketching Algorithms and Lower Bounds for Ridge Regression [65.0720777731368]
We give a sketching-based iterative algorithm that computes $1+varepsilon$ approximate solutions for the ridge regression problem.
We also show that this algorithm can be used to give faster algorithms for kernel ridge regression.
arXiv Detail & Related papers (2022-04-13T22:18:47Z) - Low-Rank Approximation with $1/\epsilon^{1/3}$ Matrix-Vector Products [58.05771390012827]
We study iterative methods based on Krylov subspaces for low-rank approximation under any Schatten-$p$ norm.
Our main result is an algorithm that uses only $tildeO(k/sqrtepsilon)$ matrix-vector products.
arXiv Detail & Related papers (2022-02-10T16:10:41Z) - Subspace approximation with outliers [6.186553186139257]
We show how to extend dimension reduction techniques and bi-criteria approximations based on sampling to the problem of subspace approximation with outliers.
Our results hold even when the fraction of outliers $alpha$ is large, as long as the obvious condition $0 delta leq 1 - alpha$ is satisfied.
arXiv Detail & Related papers (2020-06-30T07:22:33Z) - The Average-Case Time Complexity of Certifying the Restricted Isometry
Property [66.65353643599899]
In compressed sensing, the restricted isometry property (RIP) on $M times N$ sensing matrices guarantees efficient reconstruction of sparse vectors.
We investigate the exact average-case time complexity of certifying the RIP property for $Mtimes N$ matrices with i.i.d. $mathcalN(0,1/M)$ entries.
arXiv Detail & Related papers (2020-05-22T16:55:01Z) - Average Case Column Subset Selection for Entrywise $\ell_1$-Norm Loss [76.02734481158458]
It is known that in the worst case, to obtain a good rank-$k$ approximation to a matrix, one needs an arbitrarily large $nOmega(1)$ number of columns.
We show that under certain minimal and realistic distributional settings, it is possible to obtain a $(k/epsilon)$-approximation with a nearly linear running time and poly$(k/epsilon)+O(klog n)$ columns.
This is the first algorithm of any kind for achieving a $(k/epsilon)$-approximation for entrywise
arXiv Detail & Related papers (2020-04-16T22:57:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.