Multimodal Representation Learning by Alternating Unimodal Adaptation
- URL: http://arxiv.org/abs/2311.10707v2
- Date: Mon, 1 Apr 2024 16:56:13 GMT
- Title: Multimodal Representation Learning by Alternating Unimodal Adaptation
- Authors: Xiaohui Zhang, Jaehong Yoon, Mohit Bansal, Huaxiu Yao,
- Abstract summary: We propose MLA (Multimodal Learning with Alternating Unimodal Adaptation) to overcome challenges where some modalities appear more dominant than others during multimodal learning.
MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process.
It captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities.
Experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities.
- Score: 73.15829571740866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal learning, which integrates data from diverse sensory modes, plays a pivotal role in artificial intelligence. However, existing multimodal learning methods often struggle with challenges where some modalities appear more dominant than others during multimodal learning, resulting in suboptimal performance. To address this challenge, we propose MLA (Multimodal Learning with Alternating Unimodal Adaptation). MLA reframes the conventional joint multimodal learning process by transforming it into an alternating unimodal learning process, thereby minimizing interference between modalities. Simultaneously, it captures cross-modal interactions through a shared head, which undergoes continuous optimization across different modalities. This optimization process is controlled by a gradient modification mechanism to prevent the shared head from losing previously acquired information. During the inference phase, MLA utilizes a test-time uncertainty-based model fusion mechanism to integrate multimodal information. Extensive experiments are conducted on five diverse datasets, encompassing scenarios with complete modalities and scenarios with missing modalities. These experiments demonstrate the superiority of MLA over competing prior approaches. Our code is available at https://github.com/Cecile-hi/Multimodal-Learning-with-Alternating-Unimodal-Adaptation.
Related papers
- LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
Existing methods rely heavily on modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities.
We propose PathWeave, a flexible and scalable framework with modal-Path sWitching and ExpAnsion abilities.
PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73%.
arXiv Detail & Related papers (2024-10-26T13:19:57Z) - MMPareto: Boosting Multimodal Learning with Innocent Unimodal Assistance [10.580712937465032]
We identify the previously ignored gradient conflict between multimodal and unimodal learning objectives.
We propose MMPareto algorithm, which could ensure a final gradient with direction common to all learning objectives.
Our method is also expected to facilitate multi-task cases with a clear discrepancy in task difficulty.
arXiv Detail & Related papers (2024-05-28T01:19:13Z) - Beyond Unimodal Learning: The Importance of Integrating Multiple Modalities for Lifelong Learning [23.035725779568587]
We study the role and interactions of multiple modalities in mitigating forgetting in deep neural networks (DNNs)
Our findings demonstrate that leveraging multiple views and complementary information from multiple modalities enables the model to learn more accurate and robust representations.
We propose a method for integrating and aligning the information from different modalities by utilizing the relational structural similarities between the data points in each modality.
arXiv Detail & Related papers (2024-05-04T22:02:58Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
This paper investigates how to better leverage large-scale pre-trained uni-modal models to enhance discriminative multi-modal learning.
We introduce Multi-Modal Low-Rank Adaptation learning (MMLoRA)
arXiv Detail & Related papers (2023-10-08T15:01:54Z) - Learning Unseen Modality Interaction [54.23533023883659]
Multimodal learning assumes all modality combinations of interest are available during training to learn cross-modal correspondences.
We pose the problem of unseen modality interaction and introduce a first solution.
It exploits a module that projects the multidimensional features of different modalities into a common space with rich information preserved.
arXiv Detail & Related papers (2023-06-22T10:53:10Z) - On Uni-Modal Feature Learning in Supervised Multi-Modal Learning [21.822251958013737]
We abstract the features (i.e. learned representations) of multi-modal data into 1) uni-modal features, which can be learned from uni-modal training, and 2) paired features, which can only be learned from cross-modal interactions.
We demonstrate that, under a simple guiding strategy, we can achieve comparable results to other complex late-fusion or intermediate-fusion methods on various multi-modal datasets.
arXiv Detail & Related papers (2023-05-02T07:15:10Z) - Generalizing Multimodal Variational Methods to Sets [35.69942798534849]
This paper presents a novel variational method on sets called the Set Multimodal VAE (SMVAE) for learning a multimodal latent space.
By modeling the joint-modality posterior distribution directly, the proposed SMVAE learns to exchange information between multiple modalities and compensate for the drawbacks caused by factorization.
arXiv Detail & Related papers (2022-12-19T23:50:19Z) - Channel Exchanging Networks for Multimodal and Multitask Dense Image
Prediction [125.18248926508045]
We propose Channel-Exchanging-Network (CEN) which is self-adaptive, parameter-free, and more importantly, applicable for both multimodal fusion and multitask learning.
CEN dynamically exchanges channels betweenworks of different modalities.
For the application of dense image prediction, the validity of CEN is tested by four different scenarios.
arXiv Detail & Related papers (2021-12-04T05:47:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.