Breakdown of steady-state superradiance in extended driven atomic arrays
- URL: http://arxiv.org/abs/2311.10824v2
- Date: Fri, 26 Apr 2024 14:58:13 GMT
- Title: Breakdown of steady-state superradiance in extended driven atomic arrays
- Authors: Stefan Ostermann, Oriol Rubies-Bigorda, Victoria Zhang, Susanne F. Yelin,
- Abstract summary: We show how light-shifts and decay rates induced by dipole-dipole interactions modify the steady-state properties of coherently driven arrays of quantum emitters.
We find that diverging from the well-established Dicke paradigm of equal all-to-all interactions significantly modifies the emission properties.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in generating well controlled dense arrangements of individual atoms in free space have generated interest in understanding how the extended nature of these systems influences superradiance phenomena. Here, we provide an in-depth analysis on how space-dependent light-shifts and decay rates induced by dipole-dipole interactions modify the steady-state properties of coherently driven arrays of quantum emitters. We characterize the steady-state phase diagram, with particular focus on the radiative properties in the steady-state. Interestingly, we find that diverging from the well-established Dicke paradigm of equal all-to-all interactions significantly modifies the emission properties. In particular, the prominent quadratic scaling of the radiated light intensity with particle number in the steady-state -- a hallmark of steady-state Dicke superradiance -- is entirely suppressed, resulting in only linear scaling with particle number. We show that this breakdown of steady-state superradiance occurs due to the emergence of additional dissipation channels that populate not only superradiant states but also subradiant ones. The additional contribution of subradiant dark states in the dynamics leads to a divergence in the time scales needed to achieve steady-states. Building on this, we further show that measurements taken at finite times for extended atom ensembles reveal properties closely mirroring the idealized Dicke scenario.
Related papers
- Dressed atom revisited: Hamiltonian-independent treatment of the radiative cascade [0.0]
We show how the general features of the steady-state radiative cascade are affected by the interaction of the dressed atom with propagating radiation modes.
Our findings clarify the general conditions in which a description of the radiative cascade in terms of transition between dressed states is self-consistent.
arXiv Detail & Related papers (2024-09-14T14:46:27Z) - Stability and decay of subradiant patterns in a quantum gas with photon-mediated interactions [34.82692226532414]
We study subradiance in a Bose-Einstein condensate positioned at the mode crossing of two optical cavities.
metastable density structures that suppress emission into one cavity mode prevent relaxation to the stationary, superradiant grating.
We reproduce these dynamics by a quantum mean field model, suggesting that subradiance shares characteristics with quasi-stationary states predicted in other long-range interacting systems.
arXiv Detail & Related papers (2024-07-12T12:47:07Z) - Directional superradiance in a driven ultracold atomic gas in free-space [0.0]
We study a dense ensemble illuminated by a strong coherent drive while interacting via dipole-dipole interactions.
Although the steady-state features some similarities to the reported superradiant to normal non-induced transition, we observe significant qualitative and quantitative differences.
We develop a simple theoretical model that explains the scaling properties by accounting for interaction-equilibrium inhomogeneous effects and spontaneous emission.
arXiv Detail & Related papers (2024-03-22T18:14:44Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Dynamic population of multiexcitation subradiant states in incoherently
excited atomic arrays [0.0]
We show that a maximal coupling to long-lived subradiant states is achieved if only half of the atoms are initially excited.
In particular, we show that a maximal coupling to long-lived subradiant states is achieved if only half of the atoms are initially excited.
arXiv Detail & Related papers (2022-08-31T18:00:47Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Connecting steady-states of driven-dissipative photonic lattices with
spontaneous collective emission phenomena [91.3755431537592]
We use intuition to predict the formation of non-trivial photonic steady-states in one and two dimensions.
We show that subradiant emitter configurations are linked to the emergence of steady-state light-localization in the driven-dissipative setting.
These results shed light on the recently reported optically-defined cavities in polaritonic lattices.
arXiv Detail & Related papers (2021-12-27T23:58:42Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Subradiance in dilute atomic ensembles: Role of pairs and multiple
scattering [0.0]
We study the slow (subradiant) decay of the fluorescence of motionless atoms after a weak pulsed excitation.
We show that, in the linear-optics regime, the slow decay rate can be dominated by close pairs of atoms forming superradiant and subradiant states.
For a large-enough resonant optical depth and at later time, the dynamics is dominated by collective many-body effects.
arXiv Detail & Related papers (2020-12-19T11:10:04Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.