Implicit Event-RGBD Neural SLAM
- URL: http://arxiv.org/abs/2311.11013v3
- Date: Sun, 17 Mar 2024 04:54:59 GMT
- Title: Implicit Event-RGBD Neural SLAM
- Authors: Delin Qu, Chi Yan, Dong Wang, Jie Yin, Dan Xu, Bin Zhao, Xuelong Li,
- Abstract summary: Implicit neural SLAM has achieved remarkable progress recently.
Existing methods face significant challenges in non-ideal scenarios.
We propose EN-SLAM, the first event-RGBD implicit neural SLAM framework.
- Score: 54.74363487009845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Implicit neural SLAM has achieved remarkable progress recently. Nevertheless, existing methods face significant challenges in non-ideal scenarios, such as motion blur or lighting variation, which often leads to issues like convergence failures, localization drifts, and distorted mapping. To address these challenges, we propose EN-SLAM, the first event-RGBD implicit neural SLAM framework, which effectively leverages the high rate and high dynamic range advantages of event data for tracking and mapping. Specifically, EN-SLAM proposes a differentiable CRF (Camera Response Function) rendering technique to generate distinct RGB and event camera data via a shared radiance field, which is optimized by learning a unified implicit representation with the captured event and RGBD supervision. Moreover, based on the temporal difference property of events, we propose a temporal aggregating optimization strategy for the event joint tracking and global bundle adjustment, capitalizing on the consecutive difference constraints of events, significantly enhancing tracking accuracy and robustness. Finally, we construct the simulated dataset DEV-Indoors and real captured dataset DEV-Reals containing 6 scenes, 17 sequences with practical motion blur and lighting changes for evaluations. Experimental results show that our method outperforms the SOTA methods in both tracking ATE and mapping ACC with a real-time 17 FPS in various challenging environments. Project page: https://delinqu.github.io/EN-SLAM.
Related papers
- EventZoom: A Progressive Approach to Event-Based Data Augmentation for Enhanced Neuromorphic Vision [9.447299017563841]
Dynamic Vision Sensors (DVS) capture event data with high temporal resolution and low power consumption.
Event data augmentation serve as an essential method for overcoming the limitation of scale and diversity in event datasets.
arXiv Detail & Related papers (2024-05-29T08:39:31Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - Chasing Day and Night: Towards Robust and Efficient All-Day Object Detection Guided by an Event Camera [8.673063170884591]
EOLO is a novel object detection framework that achieves robust and efficient all-day detection by fusing both RGB and event modalities.
Our EOLO framework is built based on a lightweight spiking neural network (SNN) to efficiently leverage the asynchronous property of events.
arXiv Detail & Related papers (2023-09-17T15:14:01Z) - Deformable Neural Radiance Fields using RGB and Event Cameras [65.40527279809474]
We develop a novel method to model the deformable neural radiance fields using RGB and event cameras.
The proposed method uses the asynchronous stream of events and sparse RGB frames.
Experiments conducted on both realistically rendered graphics and real-world datasets demonstrate a significant benefit of the proposed method.
arXiv Detail & Related papers (2023-09-15T14:19:36Z) - Generalizing Event-Based Motion Deblurring in Real-World Scenarios [62.995994797897424]
Event-based motion deblurring has shown promising results by exploiting low-latency events.
We propose a scale-aware network that allows flexible input spatial scales and enables learning from different temporal scales of motion blur.
A two-stage self-supervised learning scheme is then developed to fit real-world data distribution.
arXiv Detail & Related papers (2023-08-11T04:27:29Z) - Event-based Simultaneous Localization and Mapping: A Comprehensive Survey [52.73728442921428]
Review of event-based vSLAM algorithms that exploit the benefits of asynchronous and irregular event streams for localization and mapping tasks.
Paper categorizes event-based vSLAM methods into four main categories: feature-based, direct, motion-compensation, and deep learning methods.
arXiv Detail & Related papers (2023-04-19T16:21:14Z) - Self-Supervised Scene Dynamic Recovery from Rolling Shutter Images and
Events [63.984927609545856]
Event-based Inter/intra-frame Compensator (E-IC) is proposed to predict the per-pixel dynamic between arbitrary time intervals.
We show that the proposed method achieves state-of-the-art and shows remarkable performance for event-based RS2GS inversion in real-world scenarios.
arXiv Detail & Related papers (2023-04-14T05:30:02Z) - Event-based Image Deblurring with Dynamic Motion Awareness [10.81953574179206]
We introduce the first dataset containing pairs of real RGB blur images and related events during the exposure time.
Our results show better robustness overall when using events, with improvements in PSNR by up to 1.57dB on synthetic data and 1.08 dB on real event data.
arXiv Detail & Related papers (2022-08-24T09:39:55Z) - Ev-TTA: Test-Time Adaptation for Event-Based Object Recognition [7.814941658661939]
Ev-TTA is a simple, effective test-time adaptation for event-based object recognition.
Our formulation can be successfully applied regardless of input representations and extended into regression tasks.
arXiv Detail & Related papers (2022-03-23T07:43:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.