Discrete approximations of Gaussian smoothing and Gaussian derivatives
- URL: http://arxiv.org/abs/2311.11317v7
- Date: Mon, 13 May 2024 11:04:21 GMT
- Title: Discrete approximations of Gaussian smoothing and Gaussian derivatives
- Authors: Tony Lindeberg,
- Abstract summary: This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data.
We consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions.
We study the properties of these three main discretization methods both theoretically and experimentally.
- Score: 0.5439020425819
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper develops an in-depth treatment concerning the problem of approximating the Gaussian smoothing and Gaussian derivative computations in scale-space theory for application on discrete data. With close connections to previous axiomatic treatments of continuous and discrete scale-space theory, we consider three main ways discretizing these scale-space operations in terms of explicit discrete convolutions, based on either (i) sampling the Gaussian kernels and the Gaussian derivative kernels, (ii) locally integrating the Gaussian kernels and the Gaussian derivative kernels over each pixel support region and (iii) basing the scale-space analysis on the discrete analogue of the Gaussian kernel, and then computing derivative approximations by applying small-support central difference operators to the spatially smoothed image data. We study the properties of these three main discretization methods both theoretically and experimentally, and characterize their performance by quantitative measures, including the results they give rise to with respect to the task of scale selection, investigated for four different use cases, and with emphasis on the behaviour at fine scales. The results show that the sampled Gaussian kernels and derivatives as well as the integrated Gaussian kernels and derivatives perform very poorly at very fine scales. At very fine scales, the discrete analogue of the Gaussian kernel with its corresponding discrete derivative approximations performs substantially better. The sampled Gaussian kernel and the sampled Gaussian derivatives do, on the other hand, lead to numerically very good approximations of the corresponding continuous results, when the scale parameter is sufficiently large, in the experiments presented in the paper, when the scale parameter is greater than a value of about 1, in units of the grid spacing.
Related papers
- Approximation properties relative to continuous scale space for hybrid discretizations of Gaussian derivative operators [0.5439020425819]
This paper presents an analysis of properties of two hybrid discretization methods for Gaussian derivatives.
The motivation for studying these discretization methods is that in situations when multiple spatial derivatives of different order are needed at the same scale level, they can be computed significantly more efficiently.
arXiv Detail & Related papers (2024-05-08T14:44:34Z) - Sampling and estimation on manifolds using the Langevin diffusion [45.57801520690309]
Two estimators of linear functionals of $mu_phi $ based on the discretized Markov process are considered.
Error bounds are derived for sampling and estimation using a discretization of an intrinsically defined Langevin diffusion.
arXiv Detail & Related papers (2023-12-22T18:01:11Z) - Gaussian Process Regression under Computational and Epistemic Misspecification [4.5656369638728656]
In large data applications, computational costs can be reduced using low-rank or sparse approximations of the kernel.
This paper investigates the effect of such kernel approximations on the element error.
arXiv Detail & Related papers (2023-12-14T18:53:32Z) - Posterior Contraction Rates for Mat\'ern Gaussian Processes on
Riemannian Manifolds [51.68005047958965]
We show that intrinsic Gaussian processes can achieve better performance in practice.
Our work shows that finer-grained analyses are needed to distinguish between different levels of data-efficiency.
arXiv Detail & Related papers (2023-09-19T20:30:58Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
We show that a step size agnostic to the curvature of the manifold achieves a curvature-independent and linear last-iterate convergence rate.
To the best of our knowledge, the possibility of curvature-independent rates and/or last-iterate convergence has not been considered before.
arXiv Detail & Related papers (2023-06-29T01:20:44Z) - Score-based Diffusion Models in Function Space [140.792362459734]
Diffusion models have recently emerged as a powerful framework for generative modeling.
We introduce a mathematically rigorous framework called Denoising Diffusion Operators (DDOs) for training diffusion models in function space.
We show that the corresponding discretized algorithm generates accurate samples at a fixed cost independent of the data resolution.
arXiv Detail & Related papers (2023-02-14T23:50:53Z) - Local Random Feature Approximations of the Gaussian Kernel [14.230653042112834]
We focus on the popular Gaussian kernel and on techniques to linearize kernel-based models by means of random feature approximations.
We show that such approaches yield poor results when modelling high-frequency data, and we propose a novel localization scheme that improves kernel approximations and downstream performance significantly.
arXiv Detail & Related papers (2022-04-12T09:52:36Z) - Scalable Variational Gaussian Processes via Harmonic Kernel
Decomposition [54.07797071198249]
We introduce a new scalable variational Gaussian process approximation which provides a high fidelity approximation while retaining general applicability.
We demonstrate that, on a range of regression and classification problems, our approach can exploit input space symmetries such as translations and reflections.
Notably, our approach achieves state-of-the-art results on CIFAR-10 among pure GP models.
arXiv Detail & Related papers (2021-06-10T18:17:57Z) - High-Dimensional Gaussian Process Inference with Derivatives [90.8033626920884]
We show that in the low-data regime $ND$, the Gram matrix can be decomposed in a manner that reduces the cost of inference to $mathcalO(N2D + (N2)3)$.
We demonstrate this potential in a variety of tasks relevant for machine learning, such as optimization and Hamiltonian Monte Carlo with predictive gradients.
arXiv Detail & Related papers (2021-02-15T13:24:41Z) - Pathwise Conditioning of Gaussian Processes [72.61885354624604]
Conventional approaches for simulating Gaussian process posteriors view samples as draws from marginal distributions of process values at finite sets of input locations.
This distribution-centric characterization leads to generative strategies that scale cubically in the size of the desired random vector.
We show how this pathwise interpretation of conditioning gives rise to a general family of approximations that lend themselves to efficiently sampling Gaussian process posteriors.
arXiv Detail & Related papers (2020-11-08T17:09:37Z) - Learning interaction kernels in mean-field equations of 1st-order
systems of interacting particles [1.776746672434207]
We introduce a nonparametric algorithm to learn interaction kernels of mean-field equations for 1st-order systems of interacting particles.
By at least squares with regularization, the algorithm learns the kernel on data-adaptive hypothesis spaces efficiently.
arXiv Detail & Related papers (2020-10-29T15:37:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.