DiffGANPaint: Fast Inpainting Using Denoising Diffusion GANs
- URL: http://arxiv.org/abs/2311.11469v1
- Date: Thu, 3 Aug 2023 17:50:41 GMT
- Title: DiffGANPaint: Fast Inpainting Using Denoising Diffusion GANs
- Authors: Moein Heidari, Alireza Morsali, Tohid Abedini, Samin Heydarian
- Abstract summary: In this paper, we propose a Denoising Diffusion Probabilistic Model (DDPM) based model capable of filling missing pixels fast.
Experiments on general-purpose image inpainting datasets verify that our approach performs superior or on par with most contemporary works.
- Score: 19.690288425689328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Free-form image inpainting is the task of reconstructing parts of an image
specified by an arbitrary binary mask. In this task, it is typically desired to
generalize model capabilities to unseen mask types, rather than learning
certain mask distributions. Capitalizing on the advances in diffusion models,
in this paper, we propose a Denoising Diffusion Probabilistic Model (DDPM)
based model capable of filling missing pixels fast as it models the backward
diffusion process using the generator of a generative adversarial network (GAN)
network to reduce sampling cost in diffusion models. Experiments on
general-purpose image inpainting datasets verify that our approach performs
superior or on par with most contemporary works.
Related papers
- TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
We propose a novel diffusion model-based MRI reconstruction method, named TC-DiffRecon, which does not rely on a specific acceleration factor for training.
We also suggest the incorporation of the MF-UNet module, designed to enhance the quality of MRI images generated by the model.
arXiv Detail & Related papers (2024-02-17T13:09:00Z) - Prompt-tuning latent diffusion models for inverse problems [72.13952857287794]
We propose a new method for solving imaging inverse problems using text-to-image latent diffusion models as general priors.
Our method, called P2L, outperforms both image- and latent-diffusion model-based inverse problem solvers on a variety of tasks, such as super-resolution, deblurring, and inpainting.
arXiv Detail & Related papers (2023-10-02T11:31:48Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPMs) have recently achieved remarkable results in conditional and unconditional image generation.
We present GradPaint, which steers the generation towards a globally coherent image.
We generalizes well to diffusion models trained on various datasets, improving upon current state-of-the-art supervised and unsupervised methods.
arXiv Detail & Related papers (2023-09-18T09:36:24Z) - Nested Diffusion Processes for Anytime Image Generation [38.84966342097197]
We propose an anytime diffusion-based method that can generate viable images when stopped at arbitrary times before completion.
In experiments on ImageNet and Stable Diffusion-based text-to-image generation, we show, both qualitatively and quantitatively, that our method's intermediate generation quality greatly exceeds that of the original diffusion model.
arXiv Detail & Related papers (2023-05-30T14:28:43Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
We revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models.
While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE)
We perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.
arXiv Detail & Related papers (2023-04-06T17:59:56Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
We propose a novel representation called DIffusion Reconstruction Error (DIRE)
DIRE measures the error between an input image and its reconstruction counterpart by a pre-trained diffusion model.
It provides a hint that DIRE can serve as a bridge to distinguish generated and real images.
arXiv Detail & Related papers (2023-03-16T13:15:03Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - RePaint: Inpainting using Denoising Diffusion Probabilistic Models [161.74792336127345]
Free-form inpainting is the task of adding new content to an image in the regions specified by an arbitrary binary mask.
We propose RePaint: A Denoising Probabilistic Model (DDPM) based inpainting approach that is applicable to even extreme masks.
We validate our method for both faces and general-purpose image inpainting using standard and extreme masks.
arXiv Detail & Related papers (2022-01-24T18:40:15Z) - DiffusionCLIP: Text-guided Image Manipulation Using Diffusion Models [33.79188588182528]
We present a novel DiffusionCLIP which performs text-driven image manipulation with diffusion models using Contrastive Language-Image Pre-training (CLIP) loss.
Our method has a performance comparable to that of the modern GAN-based image processing methods for in and out-of-domain image processing tasks.
Our method can be easily used for various novel applications, enabling image translation from an unseen domain to another unseen domain or stroke-conditioned image generation in an unseen domain.
arXiv Detail & Related papers (2021-10-06T12:59:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.