Asynchronous Bioplausible Neuron for SNN for Event Vision
- URL: http://arxiv.org/abs/2311.11853v2
- Date: Fri, 2 Aug 2024 22:59:33 GMT
- Title: Asynchronous Bioplausible Neuron for SNN for Event Vision
- Authors: Sanket Kachole, Hussain Sajwani, Fariborz Baghaei Naeini, Dimitrios Makris, Yahya Zweiri,
- Abstract summary: Spiking Neural Networks (SNNs) offer a biologically inspired approach to computer vision.
Asynchronous Bioplausible Neuron (ABN) is a dynamic spike firing mechanism to auto-adjust the variations in the input signal.
Comprehensive evaluation across various datasets demonstrates ABN's enhanced performance in image classification and segmentation.
- Score: 1.7942265700058986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking Neural Networks (SNNs) offer a biologically inspired approach to computer vision that can lead to more efficient processing of visual data with reduced energy consumption. However, maintaining homeostasis within these networks is challenging, as it requires continuous adjustment of neural responses to preserve equilibrium and optimal processing efficiency amidst diverse and often unpredictable input signals. In response to these challenges, we propose the Asynchronous Bioplausible Neuron (ABN), a dynamic spike firing mechanism to auto-adjust the variations in the input signal. Comprehensive evaluation across various datasets demonstrates ABN's enhanced performance in image classification and segmentation, maintenance of neural equilibrium, and energy efficiency.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - TAVRNN: Temporal Attention-enhanced Variational Graph RNN Captures Neural Dynamics and Behavior [2.5282283486446757]
We introduce Temporal Attention-enhanced Variational Graph Recurrent Neural Network (TAVRNN)
TAVRNN captures temporal changes in network structure by modeling sequential snapshots of neuronal activity.
We show that TAVRNN outperforms previous baseline models in classification, clustering tasks and computational efficiency.
arXiv Detail & Related papers (2024-10-01T13:19:51Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
Spiking neural networks have become an important family of neuron-based models that sidestep many of the key limitations facing modern-day backpropagation-trained deep networks.
In this work, we design and investigate a proof-of-concept instantiation of contrastive-signal-dependent plasticity (CSDP), a neuromorphic form of forward-forward-based, backpropagation-free learning.
arXiv Detail & Related papers (2024-09-17T04:48:45Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing.
This paper weaves together three groundbreaking studies that revolutionize SNN performance.
arXiv Detail & Related papers (2024-07-08T23:33:12Z) - Energy-efficient Spiking Neural Network Equalization for IM/DD Systems
with Optimized Neural Encoding [53.909333359654276]
We propose an energy-efficient equalizer for IM/DD systems based on spiking neural networks.
We optimize a neural spike encoding that boosts the equalizer's performance while decreasing energy consumption.
arXiv Detail & Related papers (2023-12-20T10:45:24Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Exploiting High Performance Spiking Neural Networks with Efficient
Spiking Patterns [4.8416725611508244]
Spiking Neural Networks (SNNs) use discrete spike sequences to transmit information, which significantly mimics the information transmission of the brain.
This paper introduces the dynamic Burst pattern and designs the Leaky Integrate and Fire or Burst (LIFB) neuron that can make a trade-off between short-time performance and dynamic temporal performance.
arXiv Detail & Related papers (2023-01-29T04:22:07Z) - Modeling Associative Plasticity between Synapses to Enhance Learning of
Spiking Neural Networks [4.736525128377909]
Spiking Neural Networks (SNNs) are the third generation of artificial neural networks that enable energy-efficient implementation on neuromorphic hardware.
We propose a robust and effective learning mechanism by modeling the associative plasticity between synapses.
Our approaches achieve superior performance on static and state-of-the-art neuromorphic datasets.
arXiv Detail & Related papers (2022-07-24T06:12:23Z) - BackEISNN: A Deep Spiking Neural Network with Adaptive Self-Feedback and
Balanced Excitatory-Inhibitory Neurons [8.956708722109415]
Spiking neural networks (SNNs) transmit information through discrete spikes, which performs well in processing spatial-temporal information.
We propose a deep spiking neural network with adaptive self-feedback and balanced excitatory and inhibitory neurons (BackEISNN)
For the MNIST, FashionMNIST, and N-MNIST datasets, our model has achieved state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T08:38:31Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.