Heralded initialization of charge state and optical transition frequency
of diamond tin-vacancy centers
- URL: http://arxiv.org/abs/2311.11962v3
- Date: Thu, 23 Nov 2023 09:05:24 GMT
- Title: Heralded initialization of charge state and optical transition frequency
of diamond tin-vacancy centers
- Authors: Julia M. Brevoord, Lorenzo De Santis, Takashi Yamamoto, Matteo Pasini,
Nina Codreanu, Tim Turan, Hans K. C. Beukers, Christopher Waas, Ronald Hanson
- Abstract summary: Diamond Tin-Vacancy centers have emerged as a promising platform for quantum information science and technology.
Key challenge for their use is the ability to prepare the center in the desired charge state with the optical transition at a pre-defined frequency.
We report on heralding such successful preparation using a combination of laser excitation, photon detection, and real-time logic.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diamond Tin-Vacancy centers have emerged as a promising platform for quantum
information science and technology. A key challenge for their use in more
complex quantum experiments and scalable applications is the ability to prepare
the center in the desired charge state with the optical transition at a
pre-defined frequency. Here we report on heralding such successful preparation
using a combination of laser excitation, photon detection, and real-time logic.
We first show that fluorescence photon counts collected during an optimized
resonant probe pulse strongly correlate with the subsequent charge state and
optical transition frequency, enabling real-time heralding of the desired state
through threshold photon counting. We then implement and apply this heralding
technique to photoluminescence excitation measurements, coherent optical
driving, and an optical Ramsey experiment, finding strongly improved optical
coherence with increasing threshold. Finally, we demonstrate that the prepared
optical frequency follows the probe laser across the inhomogeneous linewidth,
enabling tuning of the transition frequency over multiple homogeneous
linewidths.
Related papers
- Deterministic Shaping of Quantum Light Statistics [0.0]
Nonclassical states of light are an essential resource for high precision optical techniques.
We show that a class of nonlinear-optical resonators can transform many-photon wavefunctions to produce structured states of light.
arXiv Detail & Related papers (2024-03-09T04:37:19Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Coherent Coupling of a Diamond Tin-Vacancy Center to a Tunable Open Microcavity [0.0]
We present a quantum photonic interface based on a single Tin-Vacancy center in a micrometer-thin diamond membrane coupled to a tunable open microcavity.
We observe a transmission dip of 50 % for low incident photon number per Purcell-reduced excited state lifetime, while the dip disappears as the emitter is saturated with higher photon number.
This work establishes a versatile and tunable platform for advanced quantum optics experiments and proof-of-principle demonstrations towards quantum networking with solid-state qubits.
arXiv Detail & Related papers (2023-11-14T19:00:02Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
Multi-photon interference is at the heart of photonic quantum technologies.
Here, we experimentally demonstrate that detection can be implemented with a temporal resolution sufficient to interfere photons detuned on the scales necessary for cavity-based integrated photon sources.
We show how time-resolved detection of non-ideal photons can be used to improve the fidelity of an entangling operation and to mitigate the reduction of computational complexity in boson sampling experiments.
arXiv Detail & Related papers (2022-10-14T18:16:49Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - High-dimensional Frequency-Encoded Quantum Information Processing with
Passive Photonics and Time-Resolving Detection [0.9634859579172252]
We propose a new approach to process high-dimensional quantum information encoded in a photon frequency domain.
In contrast to previous approaches based on nonlinear optical processes, no active control of photon energy is required.
arXiv Detail & Related papers (2020-07-14T22:35:30Z) - Probing excited-state dynamics with quantum entangled photons:
Correspondence to coherent multidimensional spectroscopy [0.0]
Quantum light is a key resource for promoting quantum technology.
One such class of technology aims to improve the precision of optical measurements using engineered quantum states of light.
arXiv Detail & Related papers (2020-05-22T03:22:44Z) - Spectrally reconfigurable quantum emitters enabled by optimized fast
modulation [42.39394379814941]
Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is attractive for realizing such applications on-chip.
We propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission.
Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.
arXiv Detail & Related papers (2020-03-27T18:24:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.