ODDR: Outlier Detection & Dimension Reduction Based Defense Against Adversarial Patches
- URL: http://arxiv.org/abs/2311.12084v2
- Date: Tue, 27 Aug 2024 09:55:37 GMT
- Title: ODDR: Outlier Detection & Dimension Reduction Based Defense Against Adversarial Patches
- Authors: Nandish Chattopadhyay, Amira Guesmi, Muhammad Abdullah Hanif, Bassem Ouni, Muhammad Shafique,
- Abstract summary: Adversarial attacks present a significant challenge to the dependable deployment of machine learning models.
We propose Outlier Detection and Dimension Reduction (ODDR), a comprehensive defense strategy to counteract patch-based adversarial attacks.
Our approach is based on the observation that input features corresponding to adversarial patches can be identified as outliers.
- Score: 4.4100683691177816
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adversarial attacks present a significant challenge to the dependable deployment of machine learning models, with patch-based attacks being particularly potent. These attacks introduce adversarial perturbations in localized regions of an image, deceiving even well-trained models. In this paper, we propose Outlier Detection and Dimension Reduction (ODDR), a comprehensive defense strategy engineered to counteract patch-based adversarial attacks through advanced statistical methodologies. Our approach is based on the observation that input features corresponding to adversarial patches-whether naturalistic or synthetic-deviate from the intrinsic distribution of the remaining image data and can thus be identified as outliers. ODDR operates through a robust three-stage pipeline: Fragmentation, Segregation, and Neutralization. This model-agnostic framework is versatile, offering protection across various tasks, including image classification, object detection, and depth estimation, and is proved effective in both CNN-based and Transformer-based architectures. In the Fragmentation stage, image samples are divided into smaller segments, preparing them for the Segregation stage, where advanced outlier detection techniques isolate anomalous features linked to adversarial perturbations. The Neutralization stage then applies dimension reduction techniques to these outliers, effectively neutralizing the adversarial impact while preserving critical information for the machine learning task. Extensive evaluation on benchmark datasets against state-of-the-art adversarial patches underscores the efficacy of ODDR. Our method enhances model accuracy from 39.26% to 79.1% under the GoogleAp attack, outperforming leading defenses such as LGS (53.86%), Jujutsu (60%), and Jedi (64.34%).
Related papers
- MirrorCheck: Efficient Adversarial Defense for Vision-Language Models [55.73581212134293]
We propose a novel, yet elegantly simple approach for detecting adversarial samples in Vision-Language Models.
Our method leverages Text-to-Image (T2I) models to generate images based on captions produced by target VLMs.
Empirical evaluations conducted on different datasets validate the efficacy of our approach.
arXiv Detail & Related papers (2024-06-13T15:55:04Z) - Anomaly Unveiled: Securing Image Classification against Adversarial
Patch Attacks [3.6275442368775512]
Adversarial patch attacks pose a significant threat to the practical deployment of deep learning systems.
In this paper, we investigate the behavior of adversarial patches as anomalies within the distribution of image information.
Our proposed defense mechanism utilizes a clustering-based technique called DBSCAN to isolate anomalous image segments.
arXiv Detail & Related papers (2024-02-09T08:52:47Z) - DefensiveDR: Defending against Adversarial Patches using Dimensionality Reduction [4.4100683691177816]
Adrial patch-based attacks have shown to be a major deterrent towards the reliable use of machine learning models.
We propose textitDefensiveDR, a practical mechanism using a dimensionality reduction technique to thwart such patch-based attacks.
arXiv Detail & Related papers (2023-11-20T22:01:31Z) - Robust Adversarial Defense by Tensor Factorization [1.2954493726326113]
This study integrates the tensorization of input data with low-rank decomposition and tensorization of NN parameters to enhance adversarial defense.
The proposed approach demonstrates significant defense capabilities, maintaining robust accuracy even when subjected to the strongest known auto-attacks.
arXiv Detail & Related papers (2023-09-03T04:51:44Z) - PAIF: Perception-Aware Infrared-Visible Image Fusion for Attack-Tolerant
Semantic Segmentation [50.556961575275345]
We propose a perception-aware fusion framework to promote segmentation robustness in adversarial scenes.
We show that our scheme substantially enhances the robustness, with gains of 15.3% mIOU, compared with advanced competitors.
arXiv Detail & Related papers (2023-08-08T01:55:44Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Towards Adversarial Patch Analysis and Certified Defense against Crowd
Counting [61.99564267735242]
Crowd counting has drawn much attention due to its importance in safety-critical surveillance systems.
Recent studies have demonstrated that deep neural network (DNN) methods are vulnerable to adversarial attacks.
We propose a robust attack strategy called Adversarial Patch Attack with Momentum to evaluate the robustness of crowd counting models.
arXiv Detail & Related papers (2021-04-22T05:10:55Z) - FADER: Fast Adversarial Example Rejection [19.305796826768425]
Recent defenses have been shown to improve adversarial robustness by detecting anomalous deviations from legitimate training samples at different layer representations.
We introduce FADER, a novel technique for speeding up detection-based methods.
Our experiments outline up to 73x prototypes reduction compared to analyzed detectors for MNIST dataset and up to 50x for CIFAR10 respectively.
arXiv Detail & Related papers (2020-10-18T22:00:11Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z) - SAD: Saliency-based Defenses Against Adversarial Examples [0.9786690381850356]
adversarial examples drift model predictions away from the original intent of the network.
In this work, we propose a visual saliency based approach to cleaning data affected by an adversarial attack.
arXiv Detail & Related papers (2020-03-10T15:55:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.