Pyramid Diffusion for Fine 3D Large Scene Generation
- URL: http://arxiv.org/abs/2311.12085v2
- Date: Thu, 18 Jul 2024 16:04:19 GMT
- Title: Pyramid Diffusion for Fine 3D Large Scene Generation
- Authors: Yuheng Liu, Xinke Li, Xueting Li, Lu Qi, Chongshou Li, Ming-Hsuan Yang,
- Abstract summary: Diffusion models have shown remarkable results in generating 2D images and small-scale 3D objects.
Their application to the synthesis of large-scale 3D scenes has been rarely explored.
We introduce a framework, the Pyramid Discrete Diffusion model (PDD), which employs scale-varied diffusion models to progressively generate high-quality outdoor scenes.
- Score: 56.00726092690535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have shown remarkable results in generating 2D images and small-scale 3D objects. However, their application to the synthesis of large-scale 3D scenes has been rarely explored. This is mainly due to the inherent complexity and bulky size of 3D scenery data, particularly outdoor scenes, and the limited availability of comprehensive real-world datasets, which makes training a stable scene diffusion model challenging. In this work, we explore how to effectively generate large-scale 3D scenes using the coarse-to-fine paradigm. We introduce a framework, the Pyramid Discrete Diffusion model (PDD), which employs scale-varied diffusion models to progressively generate high-quality outdoor scenes. Experimental results of PDD demonstrate our successful exploration in generating 3D scenes both unconditionally and conditionally. We further showcase the data compatibility of the PDD model, due to its multi-scale architecture: a PDD model trained on one dataset can be easily fine-tuned with another dataset. Code is available at https://github.com/yuhengliu02/pyramid-discrete-diffusion.
Related papers
- LT3SD: Latent Trees for 3D Scene Diffusion [71.91446143124648]
We present LT3SD, a novel latent diffusion model for large-scale 3D scene generation.
We demonstrate the efficacy and benefits of LT3SD for large-scale, high-quality unconditional 3D scene generation.
arXiv Detail & Related papers (2024-09-12T16:55:51Z) - Director3D: Real-world Camera Trajectory and 3D Scene Generation from Text [61.9973218744157]
We introduce Director3D, a robust open-world text-to-3D generation framework, designed to generate both real-world 3D scenes and adaptive camera trajectories.
Experiments demonstrate that Director3D outperforms existing methods, offering superior performance in real-world 3D generation.
arXiv Detail & Related papers (2024-06-25T14:42:51Z) - Sampling 3D Gaussian Scenes in Seconds with Latent Diffusion Models [3.9373541926236766]
We present a latent diffusion model over 3D scenes, that can be trained using only 2D image data.
We show that our approach enables generating 3D scenes in as little as 0.2 seconds, either from scratch, or from sparse input views.
arXiv Detail & Related papers (2024-06-18T23:14:29Z) - DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data [50.164670363633704]
We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets from text prompts.
Our model is directly trained on extensive noisy and unaligned in-the-wild' 3D assets.
We achieve state-of-the-art performance in both single-class generation and text-to-3D generation.
arXiv Detail & Related papers (2024-06-06T17:58:15Z) - HoloDiffusion: Training a 3D Diffusion Model using 2D Images [71.1144397510333]
We introduce a new diffusion setup that can be trained, end-to-end, with only posed 2D images for supervision.
We show that our diffusion models are scalable, train robustly, and are competitive in terms of sample quality and fidelity to existing approaches for 3D generative modeling.
arXiv Detail & Related papers (2023-03-29T07:35:56Z) - DreamFusion: Text-to-3D using 2D Diffusion [52.52529213936283]
Recent breakthroughs in text-to-image synthesis have been driven by diffusion models trained on billions of image-text pairs.
In this work, we circumvent these limitations by using a pretrained 2D text-to-image diffusion model to perform text-to-3D synthesis.
Our approach requires no 3D training data and no modifications to the image diffusion model, demonstrating the effectiveness of pretrained image diffusion models as priors.
arXiv Detail & Related papers (2022-09-29T17:50:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.