Discovering Effective Policies for Land-Use Planning with Neuroevolution
- URL: http://arxiv.org/abs/2311.12304v5
- Date: Tue, 2 Apr 2024 03:35:02 GMT
- Title: Discovering Effective Policies for Land-Use Planning with Neuroevolution
- Authors: Risto Miikkulainen, Olivier Francon, Daniel Young, Elliot Meyerson, Clemens Schwingshackl, Jacob Bieker, Hugo Cunha, Babak Hodjat,
- Abstract summary: How areas of land are allocated for different uses, such as forests, urban areas, and agriculture, has a large effect on the terrestrial carbon balance.
A surrogate model can be learned that makes it possible to evaluate the different options available to decision-makers efficiently.
An evolutionary search process can then be used to discover effective land-use policies for specific locations.
- Score: 9.949152590444811
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How areas of land are allocated for different uses, such as forests, urban areas, and agriculture, has a large effect on the terrestrial carbon balance, and therefore climate change. Based on available historical data on land-use changes and a simulation of the associated carbon emissions and removals, a surrogate model can be learned that makes it possible to evaluate the different options available to decision-makers efficiently. An evolutionary search process can then be used to discover effective land-use policies for specific locations. Such a system was built on the Project Resilience platform and evaluated with the Land-Use Harmonization dataset LUH2 and the bookkeeping model BLUE. It generates Pareto fronts that trade off carbon impact and amount of land-use change customized to different locations, thus providing a potentially useful tool for land-use planning.
Related papers
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
We focus on limited-area modeling and train our model specifically for localized region-level downstream tasks.
We consider the MENA region due to its unique climatic challenges, where accurate localized weather forecasting is crucial for managing water resources, agriculture and mitigating the impacts of extreme weather events.
Our study aims to validate the effectiveness of integrating parameter-efficient fine-tuning (PEFT) methodologies, specifically Low-Rank Adaptation (LoRA) and its variants, to enhance forecast accuracy, as well as training speed, computational resource utilization, and memory efficiency in weather and climate modeling for specific regions.
arXiv Detail & Related papers (2024-09-11T19:31:56Z) - Fine-tuning of Geospatial Foundation Models for Aboveground Biomass Estimation [2.3429628556845405]
Fine-tuning of a geospatial foundation model to estimate above-ground biomass has comparable performance to a U-Net trained from scratch.
We also explore the transfer-learning capabilities of the models by fine-tuning on satellite imagery with sparse labels from different eco-regions in Brazil.
arXiv Detail & Related papers (2024-06-28T12:54:10Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - Mapping historical forest biomass for stock-change assessments at parcel
to landscape scales [0.0]
Map products can help identify where, when, and how forest carbon stocks are changing as a result of both anthropogenic and natural drivers alike.
These products can thus serve as inputs to a wide range of applications including stock-change assessments, monitoring reporting, and verification frameworks.
arXiv Detail & Related papers (2023-04-05T17:55:00Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Towards assessing agricultural land suitability with causal machine
learning [0.0]
We use causal machine learning to estimate the effect of crop rotation and landscape crop diversity on Net Primary Productivity in the Flanders region of Belgium.
We find that the effect of crop rotation was insignificant, while landscape crop diversity had a small negative effect on NPP.
arXiv Detail & Related papers (2022-04-27T14:13:47Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
We present our novel lightweight (only 89k parameters) Convolution Neural Network (ConvNet) to make LC classification and analysis.
In this work, we combine three real-world open data sources to obtain 13 channels.
Our embedded analysis anticipates the limited performance in some classes and gives us the opportunity to group the most similar.
arXiv Detail & Related papers (2022-01-26T14:58:51Z) - A Visual Analytics System for Profiling Urban Land Use Evolution [5.053505466956614]
Urban Chronicles is an open-source web-based visual analytics system that enables interactive exploration of changes in land use patterns.
We show the capabilities of the system by exploring the data over several years at different scales.
arXiv Detail & Related papers (2021-12-12T02:36:54Z) - Understanding the drivers of sustainable land expansion using a
patch-generating land use simulation (PLUS) model: A case study in Wuhan,
China [5.151814790795681]
This study introduces a patch-generating land use simulation (PLUS) model that integrates a land expansion analysis strategy and a CA model based on multi-type random patch seeds.
The proposed model achieved a higher simulation accuracy and more similar landscape pattern metrics to the true landscape than other CA models tested.
arXiv Detail & Related papers (2020-10-22T09:04:50Z) - OpenStreetMap: Challenges and Opportunities in Machine Learning and
Remote Sensing [66.23463054467653]
We present a review of recent methods based on machine learning to improve and use OpenStreetMap data.
We believe that OSM can change the way we interpret remote sensing data and that the synergy with machine learning can scale participatory map making.
arXiv Detail & Related papers (2020-07-13T09:58:14Z) - Farmland Parcel Delineation Using Spatio-temporal Convolutional Networks [77.63950365605845]
Farm parcel delineation provides cadastral data that is important in developing and managing climate change policies.
This data can also be useful for the agricultural insurance sector for assessing compensations following damages associated with extreme weather events.
Using satellite imaging can be a scalable and cost effective manner to perform the task of farm parcel delineation.
arXiv Detail & Related papers (2020-04-11T19:49:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.