A Survey of Graph Meets Large Language Model: Progress and Future Directions
- URL: http://arxiv.org/abs/2311.12399v4
- Date: Wed, 24 Apr 2024 08:48:13 GMT
- Title: A Survey of Graph Meets Large Language Model: Progress and Future Directions
- Authors: Yuhan Li, Zhixun Li, Peisong Wang, Jia Li, Xiangguo Sun, Hong Cheng, Jeffrey Xu Yu,
- Abstract summary: Large Language Models (LLMs) have achieved tremendous success in various domains.
LLMs have been leveraged in graph-related tasks to surpass traditional Graph Neural Networks (GNNs) based methods.
- Score: 38.63080573825683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph plays a significant role in representing and analyzing complex relationships in real-world applications such as citation networks, social networks, and biological data. Recently, Large Language Models (LLMs), which have achieved tremendous success in various domains, have also been leveraged in graph-related tasks to surpass traditional Graph Neural Networks (GNNs) based methods and yield state-of-the-art performance. In this survey, we first present a comprehensive review and analysis of existing methods that integrate LLMs with graphs. First of all, we propose a new taxonomy, which organizes existing methods into three categories based on the role (i.e., enhancer, predictor, and alignment component) played by LLMs in graph-related tasks. Then we systematically survey the representative methods along the three categories of the taxonomy. Finally, we discuss the remaining limitations of existing studies and highlight promising avenues for future research. The relevant papers are summarized and will be consistently updated at: https://github.com/yhLeeee/Awesome-LLMs-in-Graph-tasks.
Related papers
- How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
This work introduces a benchmark to assess large language models' capabilities in graph pattern tasks.
We have developed a benchmark that evaluates whether LLMs can understand graph patterns based on either terminological or topological descriptions.
Our benchmark encompasses both synthetic and real datasets, and a variety of models, with a total of 11 tasks and 7 models.
arXiv Detail & Related papers (2024-10-04T04:48:33Z) - A Survey of Large Language Models for Graphs [21.54279919476072]
We conduct an in-depth review of the latest state-of-the-art Large Language Models applied in graph learning.
We introduce a novel taxonomy to categorize existing methods based on their framework design.
We explore the strengths and limitations of each framework, and emphasize potential avenues for future research.
arXiv Detail & Related papers (2024-05-10T18:05:37Z) - Few-Shot Learning on Graphs: from Meta-learning to Pre-training and
Prompting [56.25730255038747]
This survey endeavors to synthesize recent developments, provide comparative insights, and identify future directions.
We systematically categorize existing studies into three major families: meta-learning approaches, pre-training approaches, and hybrid approaches.
We analyze the relationships among these methods and compare their strengths and limitations.
arXiv Detail & Related papers (2024-02-02T14:32:42Z) - Towards Graph Foundation Models: A Survey and Beyond [66.37994863159861]
Foundation models have emerged as critical components in a variety of artificial intelligence applications.
The capabilities of foundation models to generalize and adapt motivate graph machine learning researchers to discuss the potential of developing a new graph learning paradigm.
This article introduces the concept of Graph Foundation Models (GFMs), and offers an exhaustive explanation of their key characteristics and underlying technologies.
arXiv Detail & Related papers (2023-10-18T09:31:21Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Deep learning for dynamic graphs: models and benchmarks [16.851689741256912]
Recent progress in research on Deep Graph Networks (DGNs) has led to a maturation of the domain of learning on graphs.
Despite the growth of this research field, there are still important challenges that are yet unsolved.
arXiv Detail & Related papers (2023-07-12T12:02:36Z) - Counterfactual Learning on Graphs: A Survey [34.47646823407408]
Graph neural networks (GNNs) have achieved great success in representation learning on graphs.
Counterfactual learning on graphs has shown promising results in alleviating these drawbacks.
Various approaches have been proposed for counterfactual fairness, explainability, link prediction and other applications on graphs.
arXiv Detail & Related papers (2023-04-03T21:42:42Z) - Graph Pooling for Graph Neural Networks: Progress, Challenges, and
Opportunities [128.55790219377315]
Graph neural networks have emerged as a leading architecture for many graph-level tasks.
graph pooling is indispensable for obtaining a holistic graph-level representation of the whole graph.
arXiv Detail & Related papers (2022-04-15T04:02:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.