Visual Analytics for Generative Transformer Models
- URL: http://arxiv.org/abs/2311.12418v1
- Date: Tue, 21 Nov 2023 08:15:01 GMT
- Title: Visual Analytics for Generative Transformer Models
- Authors: Raymond Li, Ruixin Yang, Wen Xiao, Ahmed AbuRaed, Gabriel Murray,
Giuseppe Carenini
- Abstract summary: We present a novel visual analytical framework to support the analysis of transformer-based generative networks.
Our framework is one of the first dedicated to supporting the analysis of transformer-based encoder-decoder models.
- Score: 28.251218916955125
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While transformer-based models have achieved state-of-the-art results in a
variety of classification and generation tasks, their black-box nature makes
them challenging for interpretability. In this work, we present a novel visual
analytical framework to support the analysis of transformer-based generative
networks. In contrast to previous work, which has mainly focused on
encoder-based models, our framework is one of the first dedicated to supporting
the analysis of transformer-based encoder-decoder models and decoder-only
models for generative and classification tasks. Hence, we offer an intuitive
overview that allows the user to explore different facets of the model through
interactive visualization. To demonstrate the feasibility and usefulness of our
framework, we present three detailed case studies based on real-world NLP
research problems.
Related papers
- A Review of Transformer-Based Models for Computer Vision Tasks: Capturing Global Context and Spatial Relationships [0.5639904484784127]
Transformer-based models have transformed the landscape of natural language processing (NLP)
These models are renowned for their ability to capture long-range dependencies and contextual information.
We discuss potential research directions and applications of transformer-based models in computer vision.
arXiv Detail & Related papers (2024-08-27T16:22:18Z) - Evolutive Rendering Models [91.99498492855187]
We present textitevolutive rendering models, a methodology where rendering models possess the ability to evolve and adapt dynamically throughout rendering process.
In particular, we present a comprehensive learning framework that enables the optimization of three principal rendering elements.
A detailed analysis of gradient characteristics is performed to facilitate a stable goal-oriented elements evolution.
arXiv Detail & Related papers (2024-05-27T17:40:00Z) - Transformers and Language Models in Form Understanding: A Comprehensive
Review of Scanned Document Analysis [16.86139440201837]
We focus on the topic of form understanding in the context of scanned documents.
Our research methodology involves an in-depth analysis of popular documents and forms of understanding of trends over the last decade.
We showcase how transformers have propelled the field forward, revolutionizing form-understanding techniques.
arXiv Detail & Related papers (2024-03-06T22:22:02Z) - Controllable Topic-Focused Abstractive Summarization [57.8015120583044]
Controlled abstractive summarization focuses on producing condensed versions of a source article to cover specific aspects.
This paper presents a new Transformer-based architecture capable of producing topic-focused summaries.
arXiv Detail & Related papers (2023-11-12T03:51:38Z) - OtterHD: A High-Resolution Multi-modality Model [57.16481886807386]
OtterHD-8B is an innovative multimodal model engineered to interpret high-resolution visual inputs with granular precision.
Our study highlights the critical role of flexibility and high-resolution input capabilities in large multimodal models.
arXiv Detail & Related papers (2023-11-07T18:59:58Z) - Understanding Addition in Transformers [2.07180164747172]
This paper provides a comprehensive analysis of a one-layer Transformer model trained to perform n-digit integer addition.
Our findings suggest that the model dissects the task into parallel streams dedicated to individual digits, employing varied algorithms tailored to different positions within the digits.
arXiv Detail & Related papers (2023-10-19T19:34:42Z) - Counterfactual Edits for Generative Evaluation [0.0]
We propose a framework for the evaluation and explanation of synthesized results based on concepts instead of pixels.
Our framework exploits knowledge-based counterfactual edits that underline which objects or attributes should be inserted, removed, or replaced from generated images.
Global explanations produced by accumulating local edits can also reveal what concepts a model cannot generate in total.
arXiv Detail & Related papers (2023-03-02T20:10:18Z) - MultiViz: An Analysis Benchmark for Visualizing and Understanding
Multimodal Models [103.9987158554515]
MultiViz is a method for analyzing the behavior of multimodal models by scaffolding the problem of interpretability into 4 stages.
We show that the complementary stages in MultiViz together enable users to simulate model predictions, assign interpretable concepts to features, perform error analysis on model misclassifications, and use insights from error analysis to debug models.
arXiv Detail & Related papers (2022-06-30T18:42:06Z) - T3-Vis: a visual analytic framework for Training and fine-Tuning
Transformers in NLP [0.0]
This paper presents the design and implementation of a visual analytic framework for assisting researchers in such process.
Our framework offers an intuitive overview that allows the user to explore different facets of the model.
It allows a suite of built-in algorithms that compute the importance of model components and different parts of the input sequence.
arXiv Detail & Related papers (2021-08-31T02:20:46Z) - Visformer: The Vision-friendly Transformer [105.52122194322592]
We propose a new architecture named Visformer, which is abbreviated from the Vision-friendly Transformer'
With the same computational complexity, Visformer outperforms both the Transformer-based and convolution-based models in terms of ImageNet classification accuracy.
arXiv Detail & Related papers (2021-04-26T13:13:03Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
We take the NER task as a testbed to analyze the generalization behavior of existing models from different perspectives.
Experiments with in-depth analyses diagnose the bottleneck of existing neural NER models.
As a by-product of this paper, we have open-sourced a project that involves a comprehensive summary of recent NER papers.
arXiv Detail & Related papers (2020-01-12T04:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.