Fair Text Classification with Wasserstein Independence
- URL: http://arxiv.org/abs/2311.12689v1
- Date: Tue, 21 Nov 2023 15:51:06 GMT
- Title: Fair Text Classification with Wasserstein Independence
- Authors: Thibaud Leteno, Antoine Gourru, Charlotte Laclau, R\'emi Emonet,
Christophe Gravier
- Abstract summary: Group fairness is a central research topic in text classification, where reaching fair treatment between sensitive groups remains an open challenge.
This paper presents a novel method for mitigating biases in neural text classification, agnostic to the model architecture.
- Score: 4.887319013701134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Group fairness is a central research topic in text classification, where
reaching fair treatment between sensitive groups (e.g. women vs. men) remains
an open challenge. This paper presents a novel method for mitigating biases in
neural text classification, agnostic to the model architecture. Considering the
difficulty to distinguish fair from unfair information in a text encoder, we
take inspiration from adversarial training to induce Wasserstein independence
between representations learned to predict our target label and the ones
learned to predict some sensitive attribute. Our approach provides two
significant advantages. Firstly, it does not require annotations of sensitive
attributes in both testing and training data. This is more suitable for
real-life scenarios compared to existing methods that require annotations of
sensitive attributes at train time. Second, our approach exhibits a comparable
or better fairness-accuracy trade-off compared to existing methods.
Related papers
- What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
In reinforcement learning problems, agents must consider long-term fairness while maximizing returns.
Recent works have proposed many different types of fairness notions, but how unfairness arises in RL problems remains unclear.
We introduce a novel notion called dynamics fairness, which explicitly captures the inequality stemming from environmental dynamics.
arXiv Detail & Related papers (2024-04-16T22:47:59Z) - Hyper-parameter Tuning for Fair Classification without Sensitive Attribute Access [12.447577504758485]
We propose a framework to train fair classifiers without access to sensitive attributes on either training or validation data.
We show theoretically and empirically that these proxy labels can be used to maximize fairness under average accuracy constraints.
arXiv Detail & Related papers (2023-02-02T19:45:50Z) - Human-Guided Fair Classification for Natural Language Processing [9.652938946631735]
We show how to leverage unsupervised style transfer and GPT-3's zero-shot capabilities to generate semantically similar sentences that differ along sensitive attributes.
We validate the generated pairs via an extensive crowdsourcing study, which confirms that a lot of these pairs align with human intuition about fairness in the context of toxicity classification.
arXiv Detail & Related papers (2022-12-20T10:46:40Z) - Conditional Supervised Contrastive Learning for Fair Text Classification [59.813422435604025]
We study learning fair representations that satisfy a notion of fairness known as equalized odds for text classification via contrastive learning.
Specifically, we first theoretically analyze the connections between learning representations with a fairness constraint and conditional supervised contrastive objectives.
arXiv Detail & Related papers (2022-05-23T17:38:30Z) - Learning Disentangled Textual Representations via Statistical Measures
of Similarity [35.74568888409149]
We introduce a family of regularizers for learning disentangled representations that do not require training.
Our novel regularizers do not require additional training, are faster and do not involve additional tuning.
arXiv Detail & Related papers (2022-05-07T08:06:22Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - A Novel Estimator of Mutual Information for Learning to Disentangle
Textual Representations [27.129551973093008]
This paper introduces a novel variational upper bound to the mutual information between an attribute and the latent code of an encoder.
It aims at controlling the approximation error via the Renyi's divergence, leading to both better disentangled representations and a precise control of the desirable degree of disentanglement.
We show the superiority of this method on fair classification and on textual style transfer tasks.
arXiv Detail & Related papers (2021-05-06T14:05:06Z) - Estimating and Improving Fairness with Adversarial Learning [65.99330614802388]
We propose an adversarial multi-task training strategy to simultaneously mitigate and detect bias in the deep learning-based medical image analysis system.
Specifically, we propose to add a discrimination module against bias and a critical module that predicts unfairness within the base classification model.
We evaluate our framework on a large-scale public-available skin lesion dataset.
arXiv Detail & Related papers (2021-03-07T03:10:32Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
We propose a weakly-supervised approach for aspect-based sentiment analysis.
We learn sentiment, aspect> joint topic embeddings in the word embedding space.
We then use neural models to generalize the word-level discriminative information.
arXiv Detail & Related papers (2020-10-13T21:33:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.