AnimateAnything: Fine-Grained Open Domain Image Animation with Motion
Guidance
- URL: http://arxiv.org/abs/2311.12886v2
- Date: Mon, 4 Dec 2023 05:43:53 GMT
- Title: AnimateAnything: Fine-Grained Open Domain Image Animation with Motion
Guidance
- Authors: Zuozhuo Dai and Zhenghao Zhang and Yao Yao and Bingxue Qiu and Siyu
Zhu and Long Qin and Weizhi Wang
- Abstract summary: We introduce an open domain image animation method that leverages the motion prior of video diffusion model.
Our approach introduces targeted motion area guidance and motion strength guidance, enabling precise control of the movable area and its motion speed.
We validate the effectiveness of our method through rigorous experiments on an open-domain dataset.
- Score: 13.416296247896042
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Image animation is a key task in computer vision which aims to generate
dynamic visual content from static image. Recent image animation methods employ
neural based rendering technique to generate realistic animations. Despite
these advancements, achieving fine-grained and controllable image animation
guided by text remains challenging, particularly for open-domain images
captured in diverse real environments. In this paper, we introduce an open
domain image animation method that leverages the motion prior of video
diffusion model. Our approach introduces targeted motion area guidance and
motion strength guidance, enabling precise control the movable area and its
motion speed. This results in enhanced alignment between the animated visual
elements and the prompting text, thereby facilitating a fine-grained and
interactive animation generation process for intricate motion sequences. We
validate the effectiveness of our method through rigorous experiments on an
open-domain dataset, with the results showcasing its superior performance.
Project page can be found at https://animationai.github.io/AnimateAnything.
Related papers
- Controllable Longer Image Animation with Diffusion Models [12.565739255499594]
We introduce an open-domain controllable image animation method using motion priors with video diffusion models.
Our method achieves precise control over the direction and speed of motion in the movable region by extracting the motion field information from videos.
We propose an efficient long-duration video generation method based on noise reschedule specifically tailored for image animation tasks.
arXiv Detail & Related papers (2024-05-27T16:08:00Z) - AniClipart: Clipart Animation with Text-to-Video Priors [28.76809141136148]
We introduce AniClipart, a system that transforms static images into high-quality motion sequences guided by text-to-video priors.
Experimental results show that the proposed AniClipart consistently outperforms existing image-to-video generation models.
arXiv Detail & Related papers (2024-04-18T17:24:28Z) - AnimateZero: Video Diffusion Models are Zero-Shot Image Animators [63.938509879469024]
We propose AnimateZero to unveil the pre-trained text-to-video diffusion model, i.e., AnimateDiff.
For appearance control, we borrow intermediate latents and their features from the text-to-image (T2I) generation.
For temporal control, we replace the global temporal attention of the original T2V model with our proposed positional-corrected window attention.
arXiv Detail & Related papers (2023-12-06T13:39:35Z) - MagicAnimate: Temporally Consistent Human Image Animation using
Diffusion Model [74.84435399451573]
This paper studies the human image animation task, which aims to generate a video of a certain reference identity following a particular motion sequence.
Existing animation works typically employ the frame-warping technique to animate the reference image towards the target motion.
We introduce MagicAnimate, a diffusion-based framework that aims at enhancing temporal consistency, preserving reference image faithfully, and improving animation fidelity.
arXiv Detail & Related papers (2023-11-27T18:32:31Z) - DynamiCrafter: Animating Open-domain Images with Video Diffusion Priors [63.43133768897087]
We propose a method to convert open-domain images into animated videos.
The key idea is to utilize the motion prior to text-to-video diffusion models by incorporating the image into the generative process as guidance.
Our proposed method can produce visually convincing and more logical & natural motions, as well as higher conformity to the input image.
arXiv Detail & Related papers (2023-10-18T14:42:16Z) - Learning Fine-Grained Motion Embedding for Landscape Animation [140.57889994591494]
We propose a model named FGLA to generate high-quality and realistic videos by learning Fine-Grained motion embedding.
To train and evaluate on diverse time-lapse videos, we build the largest high-resolution Time-lapse video dataset with Diverse scenes.
Our method achieves relative improvements by 19% on LIPIS and 5.6% on FVD compared with state-of-the-art methods on our dataset.
arXiv Detail & Related papers (2021-09-06T02:47:11Z) - Animating Pictures with Eulerian Motion Fields [90.30598913855216]
We show a fully automatic method for converting a still image into a realistic animated looping video.
We target scenes with continuous fluid motion, such as flowing water and billowing smoke.
We propose a novel video looping technique that flows features both forward and backward in time and then blends the results.
arXiv Detail & Related papers (2020-11-30T18:59:06Z) - A Robust Interactive Facial Animation Editing System [0.0]
We propose a new learning-based approach to easily edit a facial animation from a set of intuitive control parameters.
We use a resolution-preserving fully convolutional neural network that maps control parameters to blendshapes coefficients sequences.
The proposed system is robust and can handle coarse, exaggerated edits from non-specialist users.
arXiv Detail & Related papers (2020-07-18T08:31:02Z) - First Order Motion Model for Image Animation [90.712718329677]
Image animation consists of generating a video sequence so that an object in a source image is animated according to the motion of a driving video.
Our framework addresses this problem without using any annotation or prior information about the specific object to animate.
arXiv Detail & Related papers (2020-02-29T07:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.