Enhancing Solutions for Complex PDEs: Introducing Complementary Convolution and Equivariant Attention in Fourier Neural Operators
- URL: http://arxiv.org/abs/2311.12902v2
- Date: Fri, 26 Jul 2024 07:08:19 GMT
- Title: Enhancing Solutions for Complex PDEs: Introducing Complementary Convolution and Equivariant Attention in Fourier Neural Operators
- Authors: Xuanle Zhao, Yue Sun, Tielin Zhang, Bo Xu,
- Abstract summary: We propose a novel hierarchical Fourier neural operator along with convolution-residual layers and attention mechanisms to solve complex PDEs.
We find that the proposed method achieves superior performance in these PDE benchmarks, especially for equations characterized by rapid coefficient variations.
- Score: 17.91230192726962
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural operators improve conventional neural networks by expanding their capabilities of functional mappings between different function spaces to solve partial differential equations (PDEs). One of the most notable methods is the Fourier Neural Operator (FNO), which draws inspiration from Green's function method and directly approximates operator kernels in the frequency domain. However, after empirical observation followed by theoretical validation, we demonstrate that the FNO approximates kernels primarily in a relatively low-frequency domain. This suggests a limited capability in solving complex PDEs, particularly those characterized by rapid coefficient changes and oscillations in the solution space. Such cases are crucial in specific scenarios, like atmospheric convection and ocean circulation. To address this challenge, inspired by the translation equivariant of the convolution kernel, we propose a novel hierarchical Fourier neural operator along with convolution-residual layers and attention mechanisms to make them complementary in the frequency domain to solve complex PDEs. We perform experiments on forward and reverse problems of multiscale elliptic equations, Navier-Stokes equations, and other physical scenarios, and find that the proposed method achieves superior performance in these PDE benchmarks, especially for equations characterized by rapid coefficient variations.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Graph Fourier Neural Kernels (G-FuNK): Learning Solutions of Nonlinear Diffusive Parametric PDEs on Multiple Domains [2.8780581594260926]
We introduce a novel family of neural operators based on our Graph Fourier Neural Kernels.
G-FuNK combines components that are parameter- and domain-adapted with others that are not.
Experiments show G-FuNK's capability to accurately approximate heat, reaction diffusion, and cardiac electrophysiology equations.
arXiv Detail & Related papers (2024-10-06T23:55:34Z) - Dilated convolution neural operator for multiscale partial differential equations [11.093527996062058]
We propose the Dilated Convolutional Neural Operator (DCNO) for multiscale partial differential equations.
The DCNO architecture effectively captures both high-frequency and low-frequency features while maintaining a low computational cost.
We show that DCNO strikes an optimal balance between accuracy and computational cost and offers a promising solution for multiscale operator learning.
arXiv Detail & Related papers (2024-07-16T08:17:02Z) - Physics-embedded Fourier Neural Network for Partial Differential Equations [35.41134465442465]
We introduce Physics-embedded Fourier Neural Networks (PeFNN) with flexible and explainable error.
PeFNN is designed to enforce momentum conservation and yields interpretable nonlinear expressions.
We demonstrate its outstanding performance for challenging real-world applications such as large-scale flood simulations.
arXiv Detail & Related papers (2024-07-15T18:30:39Z) - Coupled Multiwavelet Neural Operator Learning for Coupled Partial
Differential Equations [13.337268390844745]
We propose a textitcoupled multiwavelets neural operator (CMWNO) learning scheme by decoupling the coupled integral kernels.
The proposed model achieves significantly higher accuracy compared to previous learning-based solvers.
arXiv Detail & Related papers (2023-03-04T03:06:47Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Blending Neural Operators and Relaxation Methods in PDE Numerical Solvers [3.2712166248850685]
HINTS is a hybrid, iterative, numerical, and transferable solver for partial differential equations.
It balances the convergence behavior across the spectrum of eigenmodes by utilizing the spectral bias of DeepONet.
It is flexible with regards to discretizations, computational domain, and boundary conditions.
arXiv Detail & Related papers (2022-08-28T19:07:54Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
We propose an approach to solving partial differential equations (PDEs) using a set of neural networks.
We regress a set of neural networks onto a reduced order Proper Orthogonal Decomposition (POD) basis.
These networks are then used in combination with a branch network that ingests the parameters of the prescribed PDE to compute a reduced order approximation to the PDE.
arXiv Detail & Related papers (2022-08-02T18:27:13Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.