Non-Sequential Ensemble Kalman Filtering using Distributed Arrays
- URL: http://arxiv.org/abs/2311.12909v1
- Date: Tue, 21 Nov 2023 16:42:26 GMT
- Title: Non-Sequential Ensemble Kalman Filtering using Distributed Arrays
- Authors: C\'edric Travelletti, J\"org Franke, David Ginsbourger and Stefan
Br\"onnimann
- Abstract summary: This work introduces a new, distributed implementation of the Ensemble Kalman Filter (EnKF)
It allows for non-sequential assimilation of large datasets in high-dimensional problems.
- Score: 0.24578723416255752
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This work introduces a new, distributed implementation of the Ensemble Kalman
Filter (EnKF) that allows for non-sequential assimilation of large datasets in
high-dimensional problems. The traditional EnKF algorithm is computationally
intensive and exhibits difficulties in applications requiring interaction with
the background covariance matrix, prompting the use of methods like sequential
assimilation which can introduce unwanted consequences, such as dependency on
observation ordering. Our implementation leverages recent advancements in
distributed computing to enable the construction and use of the full model
error covariance matrix in distributed memory, allowing for single-batch
assimilation of all observations and eliminating order dependencies.
Comparative performance assessments, involving both synthetic and real-world
paleoclimatic reconstruction applications, indicate that the new,
non-sequential implementation outperforms the traditional, sequential one.
Related papers
- Efficient Differentiable Discovery of Causal Order [14.980926991441342]
Intersort is a score-based method to discover causal order of variables.
We reformulate Intersort using differentiable sorting and ranking techniques.
Our work opens the door to efficiently incorporating regularization for causal order into the training of differentiable models.
arXiv Detail & Related papers (2024-10-11T13:11:55Z) - Fast Semisupervised Unmixing Using Nonconvex Optimization [80.11512905623417]
We introduce a novel convex convex model for semi/library-based unmixing.
We demonstrate the efficacy of Alternating Methods of sparse unsupervised unmixing.
arXiv Detail & Related papers (2024-01-23T10:07:41Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Classification of BCI-EEG based on augmented covariance matrix [0.0]
We propose a new framework based on the augmented covariance extracted from an autoregressive model to improve motor imagery classification.
We will test our approach on several datasets and several subjects using the MOABB framework.
arXiv Detail & Related papers (2023-02-09T09:04:25Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - Generalised Latent Assimilation in Heterogeneous Reduced Spaces with
Machine Learning Surrogate Models [10.410970649045943]
We develop a system which combines reduced-order surrogate models with a novel data assimilation technique.
Generalised Latent Assimilation can benefit both the efficiency provided by the reduced-order modelling and the accuracy of data assimilation.
arXiv Detail & Related papers (2022-04-07T15:13:12Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Fitting Laplacian Regularized Stratified Gaussian Models [0.0]
We consider the problem of jointly estimating multiple related zero-mean Gaussian distributions from data.
We propose a distributed method that scales to large problems, and illustrate the efficacy of the method with examples in finance, radar signal processing, and weather forecasting.
arXiv Detail & Related papers (2020-05-04T18:00:59Z) - Adaptive Correlated Monte Carlo for Contextual Categorical Sequence
Generation [77.7420231319632]
We adapt contextual generation of categorical sequences to a policy gradient estimator, which evaluates a set of correlated Monte Carlo (MC) rollouts for variance control.
We also demonstrate the use of correlated MC rollouts for binary-tree softmax models, which reduce the high generation cost in large vocabulary scenarios.
arXiv Detail & Related papers (2019-12-31T03:01:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.