Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging
- URL: http://arxiv.org/abs/2311.13319v1
- Date: Wed, 22 Nov 2023 11:15:38 GMT
- Title: Deep Learning for Vascular Segmentation and Applications in Phase
Contrast Tomography Imaging
- Authors: Ekin Yagis, Shahab Aslani, Yashvardhan Jain, Yang Zhou, Shahrokh
Rahmani, Joseph Brunet, Alexandre Bellier, Christopher Werlein, Maximilian
Ackermann, Danny Jonigk, Paul Tafforeau, Peter D Lee and Claire Walsh
- Abstract summary: We present a thorough literature review, highlighting the state of machine learning techniques across diverse organs.
Our goal is to provide a foundation on the topic and identify a robust baseline model for application to vascular segmentation in a new imaging modality.
HiP CT enables 3D imaging of complete organs at an unprecedented resolution of ca. 20mm per voxel.
- Score: 33.23991248643144
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated blood vessel segmentation is vital for biomedical imaging, as
vessel changes indicate many pathologies. Still, precise segmentation is
difficult due to the complexity of vascular structures, anatomical variations
across patients, the scarcity of annotated public datasets, and the quality of
images. We present a thorough literature review, highlighting the state of
machine learning techniques across diverse organs. Our goal is to provide a
foundation on the topic and identify a robust baseline model for application to
vascular segmentation in a new imaging modality, Hierarchical Phase Contrast
Tomography (HiP CT). Introduced in 2020 at the European Synchrotron Radiation
Facility, HiP CT enables 3D imaging of complete organs at an unprecedented
resolution of ca. 20mm per voxel, with the capability for localized zooms in
selected regions down to 1mm per voxel without sectioning. We have created a
training dataset with double annotator validated vascular data from three
kidneys imaged with HiP CT in the context of the Human Organ Atlas Project.
Finally, utilising the nnU Net model, we conduct experiments to assess the
models performance on both familiar and unseen samples, employing vessel
specific metrics. Our results show that while segmentations yielded reasonably
high scores such as clDice values ranging from 0.82 to 0.88, certain errors
persisted. Large vessels that collapsed due to the lack of hydrostatic pressure
(HiP CT is an ex vivo technique) were segmented poorly. Moreover, decreased
connectivity in finer vessels and higher segmentation errors at vessel
boundaries were observed. Such errors obstruct the understanding of the
structures by interrupting vascular tree connectivity. Through our review and
outputs, we aim to set a benchmark for subsequent model evaluations using
various modalities, especially with the HiP CT imaging database.
Related papers
- Neurovascular Segmentation in sOCT with Deep Learning and Synthetic Training Data [4.5276169699857505]
This study demonstrates a synthesis engine for neurovascular segmentation in serial-section optical coherence tomography images.
Our approach comprises two phases: label synthesis and label-to-image transformation.
We demonstrate the efficacy of the former by comparing it to several more realistic sets of training labels, and the latter by an ablation study of synthetic noise and artifact models.
arXiv Detail & Related papers (2024-07-01T16:09:07Z) - A label-free and data-free training strategy for vasculature segmentation in serial sectioning OCT data [4.746694624239095]
Serial sectioning Optical Coherence Tomography (s OCT) is becoming increasingly popular to study post-mortem neurovasculature.
Here, we leverage synthetic datasets of vessels to train a deep learning segmentation model.
Both approaches yield similar Dice scores, although with very different false positive and false negative rates.
arXiv Detail & Related papers (2024-05-22T15:39:31Z) - Synthetic optical coherence tomography angiographs for detailed retinal
vessel segmentation without human annotations [12.571349114534597]
We present a lightweight simulation of the retinal vascular network based on space colonization for faster and more realistic OCTA synthesis.
We demonstrate the superior segmentation performance of our approach in extensive quantitative and qualitative experiments on three public datasets.
arXiv Detail & Related papers (2023-06-19T14:01:47Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
Vessel segmentation is crucial in many medical image applications, such as detecting coronary stenoses, retinal vessel diseases and brain aneurysms.
We present a novel approach, the affinity feature strengthening network (AFN), which jointly models geometry and refines pixel-wise segmentation features using a contrast-insensitive, multiscale affinity approach.
arXiv Detail & Related papers (2022-11-12T05:39:17Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
This paper builds a novel medical slice to increase the between-slice resolution.
Considering that the ground-truth intermediate medical slices are always absent in clinical practice, we introduce the incremental cross-view mutual distillation strategy.
Our method outperforms state-of-the-art algorithms by clear margins.
arXiv Detail & Related papers (2021-12-20T03:38:37Z) - Rethinking the Extraction and Interaction of Multi-Scale Features for
Vessel Segmentation [53.187152856583396]
We propose a novel deep learning model called PC-Net to segment retinal vessels and major arteries in 2D fundus image and 3D computed tomography angiography (CTA) scans.
In PC-Net, the pyramid squeeze-and-excitation (PSE) module introduces spatial information to each convolutional block, boosting its ability to extract more effective multi-scale features.
arXiv Detail & Related papers (2020-10-09T08:22:54Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - ROSE: A Retinal OCT-Angiography Vessel Segmentation Dataset and New
Model [41.444917622855606]
We release a dedicated OCT-A SEgmentation dataset (ROSE), which consists of 229 OCT-A images with vessel annotations at either centerline-level or pixel level.
Secondly, we propose a novel Split-based Coarse-to-Fine vessel segmentation network (SCF-Net), with the ability to detect thick and thin vessels separately.
In the SCF-Net, a split-based coarse segmentation (SCS) module is first introduced to produce a preliminary confidence map of vessels, and a split-based refinement (SRN) module is then used to optimize the shape/contour of
arXiv Detail & Related papers (2020-07-10T06:54:19Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.