Challenges of Large Language Models for Mental Health Counseling
- URL: http://arxiv.org/abs/2311.13857v1
- Date: Thu, 23 Nov 2023 08:56:41 GMT
- Title: Challenges of Large Language Models for Mental Health Counseling
- Authors: Neo Christopher Chung, George Dyer, Lennart Brocki
- Abstract summary: The global mental health crisis is looming with a rapid increase in mental disorders, limited resources, and the social stigma of seeking treatment.
The application of large language models (LLMs) in the mental health domain raises concerns regarding the accuracy, effectiveness, and reliability of the information provided.
This paper investigates the major challenges associated with the development of LLMs for psychological counseling, including model hallucination, interpretability, bias, privacy, and clinical effectiveness.
- Score: 4.604003661048267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The global mental health crisis is looming with a rapid increase in mental
disorders, limited resources, and the social stigma of seeking treatment. As
the field of artificial intelligence (AI) has witnessed significant
advancements in recent years, large language models (LLMs) capable of
understanding and generating human-like text may be used in supporting or
providing psychological counseling. However, the application of LLMs in the
mental health domain raises concerns regarding the accuracy, effectiveness, and
reliability of the information provided. This paper investigates the major
challenges associated with the development of LLMs for psychological
counseling, including model hallucination, interpretability, bias, privacy, and
clinical effectiveness. We explore potential solutions to these challenges that
are practical and applicable to the current paradigm of AI. From our experience
in developing and deploying LLMs for mental health, AI holds a great promise
for improving mental health care, if we can carefully navigate and overcome
pitfalls of LLMs.
Related papers
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - Enhancing Mental Health Support through Human-AI Collaboration: Toward Secure and Empathetic AI-enabled chatbots [0.0]
This paper explores the potential of AI-enabled chatbots as a scalable solution.
We assess their ability to deliver empathetic, meaningful responses in mental health contexts.
We propose a federated learning framework that ensures data privacy, reduces bias, and integrates continuous validation from clinicians to enhance response quality.
arXiv Detail & Related papers (2024-09-17T20:49:13Z) - Enhancing AI-Driven Psychological Consultation: Layered Prompts with Large Language Models [44.99833362998488]
We explore the use of large language models (LLMs) like GPT-4 to augment psychological consultation services.
Our approach introduces a novel layered prompting system that dynamically adapts to user input.
We also develop empathy-driven and scenario-based prompts to enhance the LLM's emotional intelligence.
arXiv Detail & Related papers (2024-08-29T05:47:14Z) - The opportunities and risks of large language models in mental health [3.9327284040785075]
Global rates of mental health concerns are rising.
There is increasing realization that existing models of mental health care will not adequately expand to meet the demand.
With the emergence of large language models (LLMs) has come great optimism regarding their promise to create novel, large-scale solutions to support mental health.
arXiv Detail & Related papers (2024-03-21T19:59:52Z) - PsychoGAT: A Novel Psychological Measurement Paradigm through Interactive Fiction Games with LLM Agents [68.50571379012621]
Psychological measurement is essential for mental health, self-understanding, and personal development.
PsychoGAT (Psychological Game AgenTs) achieves statistically significant excellence in psychometric metrics such as reliability, convergent validity, and discriminant validity.
arXiv Detail & Related papers (2024-02-19T18:00:30Z) - Large Language Model for Mental Health: A Systematic Review [2.9429776664692526]
Large language models (LLMs) have attracted significant attention for potential applications in digital health.
This systematic review focuses on their strengths and limitations in early screening, digital interventions, and clinical applications.
arXiv Detail & Related papers (2024-02-19T17:58:41Z) - Benefits and Harms of Large Language Models in Digital Mental Health [40.02859683420844]
Large language models (LLMs) show promise in leading digital mental health to uncharted territory.
This article presents contemporary perspectives on the opportunities and risks posed by LLMs in the design, development, and implementation of digital mental health tools.
arXiv Detail & Related papers (2023-11-07T14:11:10Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
We study the task of cognitive distortion detection and propose the Diagnosis of Thought (DoT) prompting.
DoT performs diagnosis on the patient's speech via three stages: subjectivity assessment to separate the facts and the thoughts; contrastive reasoning to elicit the reasoning processes supporting and contradicting the thoughts; and schema analysis to summarize the cognition schemas.
Experiments demonstrate that DoT obtains significant improvements over ChatGPT for cognitive distortion detection, while generating high-quality rationales approved by human experts.
arXiv Detail & Related papers (2023-10-11T02:47:21Z) - Towards Mitigating Hallucination in Large Language Models via
Self-Reflection [63.2543947174318]
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks.
This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets.
arXiv Detail & Related papers (2023-10-10T03:05:44Z) - Mental Illness Classification on Social Media Texts using Deep Learning
and Transfer Learning [55.653944436488786]
According to the World health organization (WHO), approximately 450 million people are affected.
Mental illnesses, such as depression, anxiety, bipolar disorder, ADHD, and PTSD.
This study analyzes unstructured user data on Reddit platform and classifies five common mental illnesses: depression, anxiety, bipolar disorder, ADHD, and PTSD.
arXiv Detail & Related papers (2022-07-03T11:33:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.