Class Uncertainty: A Measure to Mitigate Class Imbalance
- URL: http://arxiv.org/abs/2311.14090v1
- Date: Thu, 23 Nov 2023 16:36:03 GMT
- Title: Class Uncertainty: A Measure to Mitigate Class Imbalance
- Authors: Z. S. Baltaci, K. Oksuz, S. Kuzucu, K. Tezoren, B. K. Konar, A. Ozkan,
E. Akbas, S. Kalkan
- Abstract summary: We show that considering solely the cardinality of classes does not cover all issues causing class imbalance.
We propose "Class Uncertainty" as the average predictive uncertainty of the training examples.
We also curate SVCI-20 as a novel dataset in which the classes have equal number of training examples but they differ in terms of their hardness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class-wise characteristics of training examples affect the performance of
deep classifiers. A well-studied example is when the number of training
examples of classes follows a long-tailed distribution, a situation that is
likely to yield sub-optimal performance for under-represented classes. This
class imbalance problem is conventionally addressed by approaches relying on
the class-wise cardinality of training examples, such as data resampling. In
this paper, we demonstrate that considering solely the cardinality of classes
does not cover all issues causing class imbalance. To measure class imbalance,
we propose "Class Uncertainty" as the average predictive uncertainty of the
training examples, and we show that this novel measure captures the differences
across classes better than cardinality. We also curate SVCI-20 as a novel
dataset in which the classes have equal number of training examples but they
differ in terms of their hardness; thereby causing a type of class imbalance
which cannot be addressed by the approaches relying on cardinality. We
incorporate our "Class Uncertainty" measure into a diverse set of ten class
imbalance mitigation methods to demonstrate its effectiveness on long-tailed
datasets as well as on our SVCI-20. Code and datasets will be made available.
Related papers
- Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection [64.4350027428928]
We propose a novel uncertainty-guided class imbalance learning framework for imbalanced social event detection tasks.
Our model significantly improves social event representation and classification tasks in almost all classes, especially those uncertain ones.
arXiv Detail & Related papers (2023-10-30T03:32:04Z) - Subclass-balancing Contrastive Learning for Long-tailed Recognition [38.31221755013738]
Long-tailed recognition with imbalanced class distribution naturally emerges in practical machine learning applications.
We propose a novel subclass-balancing contrastive learning'' approach that clusters each head class into multiple subclasses of similar sizes as the tail classes.
We evaluate SBCL over a list of long-tailed benchmark datasets and it achieves the state-of-the-art performance.
arXiv Detail & Related papers (2023-06-28T05:08:43Z) - Class-Imbalanced Complementary-Label Learning via Weighted Loss [8.934943507699131]
Complementary-label learning (CLL) is widely used in weakly supervised classification.
It faces a significant challenge in real-world datasets when confronted with class-imbalanced training samples.
We propose a novel problem setting that enables learning from class-imbalanced complementary labels for multi-class classification.
arXiv Detail & Related papers (2022-09-28T16:02:42Z) - Mining Minority-class Examples With Uncertainty Estimates [102.814407678425]
In the real world, the frequency of occurrence of objects is naturally skewed forming long-tail class distributions.
We propose an effective, yet simple, approach to overcome these challenges.
Our framework enhances the subdued tail-class activations and, thereafter, uses a one-class data-centric approach to effectively identify tail-class examples.
arXiv Detail & Related papers (2021-12-15T02:05:02Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
We propose textitPrototypical, which does not require fitting additional parameters given the embedding network.
Prototypical produces balanced and comparable predictions for all classes even though the training set is class-imbalanced.
We test our method on CIFAR-10LT, CIFAR-100LT and Webvision datasets, observing that Prototypical obtains substaintial improvements compared with state of the arts.
arXiv Detail & Related papers (2021-10-22T01:55:01Z) - Statistical Theory for Imbalanced Binary Classification [8.93993657323783]
We show that optimal classification performance depends on certain properties of class imbalance that have not previously been formalized.
Specifically, we propose a novel sub-type of class imbalance, which we call Uniform Class Imbalance.
These results provide some of the first meaningful finite-sample statistical theory for imbalanced binary classification.
arXiv Detail & Related papers (2021-07-05T03:55:43Z) - Multi-Class Classification from Single-Class Data with Confidences [90.48669386745361]
We propose an empirical risk minimization framework that is loss-/model-/optimizer-independent.
We show that our method can be Bayes-consistent with a simple modification even if the provided confidences are highly noisy.
arXiv Detail & Related papers (2021-06-16T15:38:13Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
Neural networks trained on real-world datasets with long-tailed label distributions are biased towards frequent classes and perform poorly on infrequent classes.
We propose a method, Partial Label Masking (PLM), which utilizes this ratio during training.
Our method achieves strong performance when compared to existing methods on both multi-label (MultiMNIST and MSCOCO) and single-label (imbalanced CIFAR-10 and CIFAR-100) image classification datasets.
arXiv Detail & Related papers (2021-05-22T18:07:56Z) - Intra-Class Uncertainty Loss Function for Classification [6.523198497365588]
intra-class uncertainty/variability is not considered, especially for datasets containing unbalanced classes.
In our framework, the features extracted by deep networks of each class are characterized by independent Gaussian distribution.
The proposed approach shows improved classification performance, through learning a better class representation.
arXiv Detail & Related papers (2021-04-12T09:02:41Z) - A Skew-Sensitive Evaluation Framework for Imbalanced Data Classification [11.125446871030734]
Class distribution skews in imbalanced datasets may lead to models with prediction bias towards majority classes.
We propose a simple and general-purpose evaluation framework for imbalanced data classification that is sensitive to arbitrary skews in class cardinalities and importances.
arXiv Detail & Related papers (2020-10-12T19:47:09Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
In most real-world scenarios, labeled training datasets are highly class-imbalanced, where deep neural networks suffer from generalizing to a balanced testing criterion.
In this paper, we explore a novel yet simple way to alleviate this issue by augmenting less-frequent classes via translating samples from more-frequent classes.
Our experimental results on a variety of class-imbalanced datasets show that the proposed method improves the generalization on minority classes significantly compared to other existing re-sampling or re-weighting methods.
arXiv Detail & Related papers (2020-04-01T13:21:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.