Uncovering Gender Stereotypes in Video Game Character Designs: A
Multi-Modal Analysis of Honor of Kings
- URL: http://arxiv.org/abs/2311.14226v1
- Date: Thu, 23 Nov 2023 23:37:32 GMT
- Title: Uncovering Gender Stereotypes in Video Game Character Designs: A
Multi-Modal Analysis of Honor of Kings
- Authors: Bingqing Liu, Kyrie Zhixuan Zhou, Danlei Zhu, Jaihyun Park
- Abstract summary: We conduct a comprehensive analysis of gender stereotypes in the character design of Honor of Kings, a popular multiplayer online battle arena (MOBA) game in China.
We probe gender stereotypes through the lens of role assignments, visual designs, spoken lines, and background stories.
We contribute with a culture-aware and multi-modal understanding of gender stereotypes in games, leveraging text-, visual-, and role-based evidence.
- Score: 3.615383162339842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we conduct a comprehensive analysis of gender stereotypes in
the character design of Honor of Kings, a popular multiplayer online battle
arena (MOBA) game in China. We probe gender stereotypes through the lens of
role assignments, visual designs, spoken lines, and background stories,
combining qualitative analysis and text mining based on the moral foundation
theory. Male heroes are commonly designed as masculine fighters with power and
female heroes as feminine "ornaments" with ideal looks. We contribute with a
culture-aware and multi-modal understanding of gender stereotypes in games,
leveraging text-, visual-, and role-based evidence.
Related papers
- A Large Scale Analysis of Gender Biases in Text-to-Image Generative Models [45.55471356313678]
This paper presents the first large-scale study on gender bias in text-to-image (T2I) models.
We create a dataset of 3,217 gender-neutral prompts and generate 200 images per prompt from five leading T2I models.
We automatically detect the perceived gender of people in the generated images and filter out images with no person or multiple people of different genders.
arXiv Detail & Related papers (2025-03-30T11:11:51Z) - Gender Bias in Text-to-Video Generation Models: A case study of Sora [63.064204206220936]
This study investigates the presence of gender bias in OpenAI's Sora, a text-to-video generation model.
We uncover significant evidence of bias by analyzing the generated videos from a diverse set of gender-neutral and stereotypical prompts.
arXiv Detail & Related papers (2024-12-30T18:08:13Z) - Computational Analysis of Gender Depiction in the Comedias of Calderón de la Barca [6.978406757882009]
We develop methods to study gender depiction in the non-religious works (comedias) of Pedro Calder'on de la Barca.
We gather insights from a corpus of more than 100 plays by using a gender classifier and applying model explainability (attribution) methods.
We find that female and male characters are portrayed differently and can be identified by the gender prediction model at practically useful accuracies.
arXiv Detail & Related papers (2024-11-06T13:13:33Z) - She Works, He Works: A Curious Exploration of Gender Bias in AI-Generated Imagery [0.0]
This paper examines gender bias in AI-generated imagery of construction workers, highlighting discrepancies in the portrayal of male and female figures.
Grounded in Griselda Pollock's theories on visual culture and gender, the analysis reveals that AI models tend to sexualize female figures while portraying male figures as more authoritative and competent.
arXiv Detail & Related papers (2024-07-26T05:56:18Z) - Revisiting The Classics: A Study on Identifying and Rectifying Gender Stereotypes in Rhymes and Poems [0.0]
The work contributes by gathering a dataset of rhymes and poems to identify gender stereotypes and propose a model with 97% accuracy to identify gender bias.
Gender stereotypes were rectified using a Large Language Model (LLM) and its effectiveness was evaluated in a comparative survey against human educator rectifications.
arXiv Detail & Related papers (2024-03-18T13:02:02Z) - The Male CEO and the Female Assistant: Evaluation and Mitigation of Gender Biases in Text-To-Image Generation of Dual Subjects [58.27353205269664]
We propose the Paired Stereotype Test (PST) framework, which queries T2I models to depict two individuals assigned with male-stereotyped and female-stereotyped social identities.
PST queries T2I models to depict two individuals assigned with male-stereotyped and female-stereotyped social identities.
Using PST, we evaluate two aspects of gender biases -- the well-known bias in gendered occupation and a novel aspect: bias in organizational power.
arXiv Detail & Related papers (2024-02-16T21:32:27Z) - Will the Prince Get True Love's Kiss? On the Model Sensitivity to Gender
Perturbation over Fairytale Texts [87.62403265382734]
Recent studies show that traditional fairytales are rife with harmful gender biases.
This work aims to assess learned biases of language models by evaluating their robustness against gender perturbations.
arXiv Detail & Related papers (2023-10-16T22:25:09Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGender is a novel dataset for benchmarking gender bias in vision-language models.
We focus on occupation-related biases within a hegemonic system of binary gender, inspired by Winograd and Winogender schemas.
We benchmark several state-of-the-art vision-language models and find that they demonstrate bias in resolving binary gender in complex scenes.
arXiv Detail & Related papers (2023-06-21T17:59:51Z) - A Moral- and Event- Centric Inspection of Gender Bias in Fairy Tales at
A Large Scale [50.92540580640479]
We computationally analyze gender bias in a fairy tale dataset containing 624 fairy tales from 7 different cultures.
We find that the number of male characters is two times that of female characters, showing a disproportionate gender representation.
Female characters turn out more associated with care-, loyalty- and sanctity- related moral words, while male characters are more associated with fairness- and authority- related moral words.
arXiv Detail & Related papers (2022-11-25T19:38:09Z) - Identifying gender bias in blockbuster movies through the lens of
machine learning [0.5023676240063351]
We gathered scripts of films from different genres and derived sentiments and emotions using natural language processing techniques.
We found specific patterns in male and female characters' personality traits in movies that align with societal stereotypes.
We used mathematical and machine learning techniques and found some biases wherein men are shown to be more dominant and envious than women.
arXiv Detail & Related papers (2022-11-21T09:41:53Z) - Gender bias in magazines oriented to men and women: a computational
approach [58.720142291102135]
We compare the content of a women-oriented magazine with that of a men-oriented one, both produced by the same editorial group over a decade.
With Topic Modelling techniques we identify the main themes discussed in the magazines and quantify how much the presence of these topics differs between magazines over time.
Our results show that the frequency of appearance of the topics Family, Business and Women as sex objects, present an initial bias that tends to disappear over time.
arXiv Detail & Related papers (2020-11-24T14:02:49Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
Machine learning models can inadvertently learn socially undesirable patterns when training on gender biased text.
We propose a general framework that decomposes gender bias in text along several pragmatic and semantic dimensions.
Using this fine-grained framework, we automatically annotate eight large scale datasets with gender information.
arXiv Detail & Related papers (2020-05-01T21:23:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.