Local Concept Embeddings for Analysis of Concept Distributions in DNN Feature Spaces
- URL: http://arxiv.org/abs/2311.14435v2
- Date: Mon, 04 Nov 2024 12:48:38 GMT
- Title: Local Concept Embeddings for Analysis of Concept Distributions in DNN Feature Spaces
- Authors: Georgii Mikriukov, Gesina Schwalbe, Korinna Bade,
- Abstract summary: We propose a novel concept analysis framework for deep neural networks (DNNs)
Instead of optimizing a single global concept vector on the complete dataset, it generates a local concept embedding (LoCE) vector for each individual sample.
Despite its context sensitivity, our method's concept segmentation performance is competitive to global baselines.
- Score: 1.0923877073891446
- License:
- Abstract: Insights into the learned latent representations are imperative for verifying deep neural networks (DNNs) in critical computer vision (CV) tasks. Therefore, state-of-the-art supervised Concept-based eXplainable Artificial Intelligence (C-XAI) methods associate user-defined concepts like ``car'' each with a single vector in the DNN latent space (concept embedding vector). In the case of concept segmentation, these linearly separate between activation map pixels belonging to a concept and those belonging to background. Existing methods for concept segmentation, however, fall short of capturing sub-concepts (e.g., ``proximate car'' and ``distant car''), and concept overlap (e.g., between ``bus'' and ``truck''). In other words, they do not capture the full distribution of concept representatives in latent space. For the first time, this work shows that these simplifications are frequently broken and that distribution information can be particularly useful for understanding DNN-learned notions of sub-concepts, concept confusion, and concept outliers. To allow exploration of learned concept distributions, we propose a novel local concept analysis framework. Instead of optimizing a single global concept vector on the complete dataset, it generates a local concept embedding (LoCE) vector for each individual sample. We use the distribution formed by LoCEs to explore the latent concept distribution by fitting Gaussian mixture models (GMMs), hierarchical clustering, and concept-level information retrieval and outlier detection. Despite its context sensitivity, our method's concept segmentation performance is competitive to global baselines. Analysis results are obtained on two datasets and five diverse vision DNN architectures, including vision transformers (ViTs).
Related papers
- Visual-TCAV: Concept-based Attribution and Saliency Maps for Post-hoc Explainability in Image Classification [3.9626211140865464]
Convolutional Neural Networks (CNNs) have seen significant performance improvements in recent years.
However, due to their size and complexity, they function as black-boxes, leading to transparency concerns.
This paper introduces a novel post-hoc explainability framework, Visual-TCAV, which aims to bridge the gap between these methods.
arXiv Detail & Related papers (2024-11-08T16:52:52Z) - Discover-then-Name: Task-Agnostic Concept Bottlenecks via Automated Concept Discovery [52.498055901649025]
Concept Bottleneck Models (CBMs) have been proposed to address the 'black-box' problem of deep neural networks.
We propose a novel CBM approach -- called Discover-then-Name-CBM (DN-CBM) -- that inverts the typical paradigm.
Our concept extraction strategy is efficient, since it is agnostic to the downstream task, and uses concepts already known to the model.
arXiv Detail & Related papers (2024-07-19T17:50:11Z) - Locally Testing Model Detections for Semantic Global Concepts [3.112979958793927]
We propose a framework for linking global concept encodings to the local processing of single network inputs.
Our approach has the advantage of fully covering the model-internal encoding of the semantic concept.
The results show major differences in the local perception and usage of individual global concept encodings.
arXiv Detail & Related papers (2024-05-27T12:52:45Z) - Concept Activation Regions: A Generalized Framework For Concept-Based
Explanations [95.94432031144716]
Existing methods assume that the examples illustrating a concept are mapped in a fixed direction of the deep neural network's latent space.
In this work, we propose allowing concept examples to be scattered across different clusters in the DNN's latent space.
This concept activation region (CAR) formalism yields global concept-based explanations and local concept-based feature importance.
arXiv Detail & Related papers (2022-09-22T17:59:03Z) - Concept Gradient: Concept-based Interpretation Without Linear Assumption [77.96338722483226]
Concept Activation Vector (CAV) relies on learning a linear relation between some latent representation of a given model and concepts.
We proposed Concept Gradient (CG), extending concept-based interpretation beyond linear concept functions.
We demonstrated CG outperforms CAV in both toy examples and real world datasets.
arXiv Detail & Related papers (2022-08-31T17:06:46Z) - Sparse Subspace Clustering for Concept Discovery (SSCCD) [1.7319807100654885]
Concepts are key building blocks of higher level human understanding.
Local attribution methods do not allow to identify coherent model behavior across samples.
We put forward a new definition of concepts as low-dimensional subspaces of hidden feature layers.
arXiv Detail & Related papers (2022-03-11T16:15:48Z) - Human-Centered Concept Explanations for Neural Networks [47.71169918421306]
We introduce concept explanations including the class of Concept Activation Vectors (CAV)
We then discuss approaches to automatically extract concepts, and approaches to address some of their caveats.
Finally, we discuss some case studies that showcase the utility of such concept-based explanations in synthetic settings and real world applications.
arXiv Detail & Related papers (2022-02-25T01:27:31Z) - Unsupervised Learning of Compositional Energy Concepts [70.11673173291426]
We propose COMET, which discovers and represents concepts as separate energy functions.
Comet represents both global concepts as well as objects under a unified framework.
arXiv Detail & Related papers (2021-11-04T17:46:12Z) - Visual Concept Reasoning Networks [93.99840807973546]
A split-transform-merge strategy has been broadly used as an architectural constraint in convolutional neural networks for visual recognition tasks.
We propose to exploit this strategy and combine it with our Visual Concept Reasoning Networks (VCRNet) to enable reasoning between high-level visual concepts.
Our proposed model, VCRNet, consistently improves the performance by increasing the number of parameters by less than 1%.
arXiv Detail & Related papers (2020-08-26T20:02:40Z) - Invertible Concept-based Explanations for CNN Models with Non-negative
Concept Activation Vectors [24.581839689833572]
Convolutional neural network (CNN) models for computer vision are powerful but lack explainability in their most basic form.
Recent work on explanations through feature importance of approximate linear models has moved from input-level features to features from mid-layer feature maps in the form of concept activation vectors (CAVs)
In this work, we rethink the ACE algorithm of Ghorbani etal., proposing an alternative invertible concept-based explanation (ICE) framework to overcome its shortcomings.
arXiv Detail & Related papers (2020-06-27T17:57:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.