Machine Translation for Ge'ez Language
- URL: http://arxiv.org/abs/2311.14530v3
- Date: Mon, 15 Apr 2024 15:08:43 GMT
- Title: Machine Translation for Ge'ez Language
- Authors: Aman Kassahun Wassie,
- Abstract summary: Machine translation for low-resource languages such as Ge'ez faces challenges such as out-of-vocabulary words, domain mismatches, and lack of labeled training data.
We develop a multilingual neural machine translation (MNMT) model based on languages relatedness.
We also experiment with using GPT-3.5, a state-of-the-art LLM, for few-shot translation with fuzzy matches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine translation (MT) for low-resource languages such as Ge'ez, an ancient language that is no longer the native language of any community, faces challenges such as out-of-vocabulary words, domain mismatches, and lack of sufficient labeled training data. In this work, we explore various methods to improve Ge'ez MT, including transfer-learning from related languages, optimizing shared vocabulary and token segmentation approaches, finetuning large pre-trained models, and using large language models (LLMs) for few-shot translation with fuzzy matches. We develop a multilingual neural machine translation (MNMT) model based on languages relatedness, which brings an average performance improvement of about 4 BLEU compared to standard bilingual models. We also attempt to finetune the NLLB-200 model, one of the most advanced translation models available today, but find that it performs poorly with only 4k training samples for Ge'ez. Furthermore, we experiment with using GPT-3.5, a state-of-the-art LLM, for few-shot translation with fuzzy matches, which leverages embedding similarity-based retrieval to find context examples from a parallel corpus. We observe that GPT-3.5 achieves a remarkable BLEU score of 9.2 with no initial knowledge of Ge'ez, but still lower than the MNMT baseline of 15.2. Our work provides insights into the potential and limitations of different approaches for low-resource and ancient language MT.
Related papers
- Multilingual Pretraining Using a Large Corpus Machine-Translated from a Single Source Language [34.54405113575568]
Machine-translated text from a single high-quality source language can contribute significantly to the pretraining of multilingual models.
We show that CuatroLLM matches or outperforms state-of-the-art multilingual models trained using closed data.
We release our corpus, models, and training pipeline under open licenses at hf.co/britllm/CuatroLLM.
arXiv Detail & Related papers (2024-10-31T14:09:50Z) - Improving Language Models Trained on Translated Data with Continual Pre-Training and Dictionary Learning Analysis [3.16714407449467]
We investigate the role of translation and synthetic data in training language models.
We translate TinyStories, a dataset of 2.2M short stories for 3-4 year old children, from English to Arabic using the open NLLB-3B MT model.
To rectify these issues, we pre-train the models with a small dataset of synthesized high-quality Arabic stories.
arXiv Detail & Related papers (2024-05-23T07:53:04Z) - Extending Multilingual Machine Translation through Imitation Learning [60.15671816513614]
Imit-MNMT treats the task as an imitation learning process, which mimicks the behavior of an expert.
We show that our approach significantly improves the translation performance between the new and the original languages.
We also demonstrate that our approach is capable of solving copy and off-target problems.
arXiv Detail & Related papers (2023-11-14T21:04:03Z) - Revisiting Machine Translation for Cross-lingual Classification [91.43729067874503]
Most research in the area focuses on the multilingual models rather than the Machine Translation component.
We show that, by using a stronger MT system and mitigating the mismatch between training on original text and running inference on machine translated text, translate-test can do substantially better than previously assumed.
arXiv Detail & Related papers (2023-05-23T16:56:10Z) - Multilingual Neural Machine Translation:Can Linguistic Hierarchies Help? [29.01386302441015]
Multilingual Neural Machine Translation (MNMT) trains a single NMT model that supports translation between multiple languages.
The performance of an MNMT model is highly dependent on the type of languages used in training, as transferring knowledge from a diverse set of languages degrades the translation performance due to negative transfer.
We propose a Hierarchical Knowledge Distillation (HKD) approach for MNMT which capitalises on language groups generated according to typological features and phylogeny of languages to overcome the issue of negative transfer.
arXiv Detail & Related papers (2021-10-15T02:31:48Z) - Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation [127.81351683335143]
Cross-lingual pretraining requires models to align the lexical- and high-level representations of the two languages.
Previous research has shown that this is because the representations are not sufficiently aligned.
In this paper, we enhance the bilingual masked language model pretraining with lexical-level information by using type-level cross-lingual subword embeddings.
arXiv Detail & Related papers (2021-03-18T21:17:58Z) - Pre-training Multilingual Neural Machine Translation by Leveraging
Alignment Information [72.2412707779571]
mRASP is an approach to pre-train a universal multilingual neural machine translation model.
We carry out experiments on 42 translation directions across a diverse setting, including low, medium, rich resource, and as well as transferring to exotic language pairs.
arXiv Detail & Related papers (2020-10-07T03:57:54Z) - Multilingual Translation with Extensible Multilingual Pretraining and
Finetuning [77.33262578776291]
Previous work has demonstrated that machine translation systems can be created by finetuning on bitext.
We show that multilingual translation models can be created through multilingual finetuning.
We demonstrate that pretrained models can be extended to incorporate additional languages without loss of performance.
arXiv Detail & Related papers (2020-08-02T05:36:55Z) - Improving Massively Multilingual Neural Machine Translation and
Zero-Shot Translation [81.7786241489002]
Massively multilingual models for neural machine translation (NMT) are theoretically attractive, but often underperform bilingual models and deliver poor zero-shot translations.
We argue that multilingual NMT requires stronger modeling capacity to support language pairs with varying typological characteristics.
We propose random online backtranslation to enforce the translation of unseen training language pairs.
arXiv Detail & Related papers (2020-04-24T17:21:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.