Ground states of one-dimensional dipolar lattice bosons at unit filling
- URL: http://arxiv.org/abs/2311.14606v2
- Date: Fri, 15 Mar 2024 09:56:32 GMT
- Title: Ground states of one-dimensional dipolar lattice bosons at unit filling
- Authors: Mateusz Łącki, Henning Korbmacher, G. A. Domínguez-Castro, Jakub Zakrzewski, Luis Santos,
- Abstract summary: We show that the tail of the dipolar interaction beyond nearest-neighbors, which may be tailored by means of confinement, results in unexpected insulating phases.
These insulating phases may be topological or topologically trivial, and are characterized by peculiar correlations of the site occupations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent experiments on ultracold dipoles in optical lattices open exciting possibilities for the quantum simulation of extended Hubbard models. When considered in one dimension, these models present at unit filling a particularly interesting ground-state physics, including a symmetry-protected topological phase known as Haldane insulator. We show that the tail of the dipolar interaction beyond nearest-neighbors, which may be tailored by means of the transversal confinement, does not only modify quantitatively the Haldane insulator regime and lead to density waves of larger periods, but results as well in unexpected insulating phases. These insulating phases may be topological or topologically trivial, and are characterized by peculiar correlations of the site occupations. These phases may be realized and observed in state-of-the-art experiments.
Related papers
- Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Discovery of a topological exciton insulator with tunable momentum order [7.605112731805254]
Topology and correlations are fundamental concepts in modern physics, but their simultaneous occurrence within a single quantum phase is exceptionally rare.
We present the discovery of such a phase of matter in Ta2Pd3Te5, a semimetal where the Coulomb interaction between electrons and holes leads to the formation of excitonic bound states below T=100 K.
Our spectroscopy unveils the development of an insulating gap stemming from the condensation of these excitons, thus giving rise to a highly sought-after correlated quantum phase known as the excitonic insulator.
arXiv Detail & Related papers (2023-12-26T03:05:10Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Floquet Engineering Ultracold Polar Molecules to Simulate Topological
Insulators [5.6888061544906545]
We present a near-term experimental blueprint for the quantum simulation of topological insulators using lattice-trapped ultracold polar molecules.
We focus on the so-called Hopf insulator, which represents a three-dimensional topological state of matter existing outside the conventional way.
arXiv Detail & Related papers (2021-05-21T18:00:00Z) - Self-organized topological insulator due to cavity-mediated correlated
tunneling [0.0]
We discuss a model where topology emerges from the quantum interference between single-particle dynamics and global interactions.
The onset of quantum interference leads to spontaneous breaking of the lattice translational symmetry.
The emerging quantum phase is a topological insulator and is found at half fillings.
arXiv Detail & Related papers (2020-11-03T13:23:06Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Observation of Time-Reversal Invariant Helical Edge-Modes in Bilayer
Graphene/WSe$_2$ Heterostructure [0.4899818550820575]
Topological insulators, along with Chern insulators and Quantum Hall insulator phases, are considered as paradigms for symmetry protected topological phases of matter.
This article reports the experimental realization of the time-reversal invariant helical edge-modes in bilayer graphene/monolayer WSe$$-based heterostructures.
arXiv Detail & Related papers (2020-03-23T14:22:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.