Point Cloud Pre-training with Diffusion Models
- URL: http://arxiv.org/abs/2311.14960v1
- Date: Sat, 25 Nov 2023 08:10:05 GMT
- Title: Point Cloud Pre-training with Diffusion Models
- Authors: Xiao Zheng, Xiaoshui Huang, Guofeng Mei, Yuenan Hou, Zhaoyang Lyu, Bo
Dai, Wanli Ouyang, Yongshun Gong
- Abstract summary: We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
- Score: 62.12279263217138
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-training a model and then fine-tuning it on downstream tasks has
demonstrated significant success in the 2D image and NLP domains. However, due
to the unordered and non-uniform density characteristics of point clouds, it is
non-trivial to explore the prior knowledge of point clouds and pre-train a
point cloud backbone. In this paper, we propose a novel pre-training method
called Point cloud Diffusion pre-training (PointDif). We consider the point
cloud pre-training task as a conditional point-to-point generation problem and
introduce a conditional point generator. This generator aggregates the features
extracted by the backbone and employs them as the condition to guide the
point-to-point recovery from the noisy point cloud, thereby assisting the
backbone in capturing both local and global geometric priors as well as the
global point density distribution of the object. We also present a recurrent
uniform sampling optimization strategy, which enables the model to uniformly
recover from various noise levels and learn from balanced supervision. Our
PointDif achieves substantial improvement across various real-world datasets
for diverse downstream tasks such as classification, segmentation and
detection. Specifically, PointDif attains 70.0% mIoU on S3DIS Area 5 for the
segmentation task and achieves an average improvement of 2.4% on ScanObjectNN
for the classification task compared to TAP. Furthermore, our pre-training
framework can be flexibly applied to diverse point cloud backbones and bring
considerable gains.
Related papers
- Parameter-Efficient Fine-Tuning in Spectral Domain for Point Cloud Learning [49.91297276176978]
We propose a novel.
Efficient Fine-Tuning (PEFT) method for point cloud, called Point GST.
Point GST freezes the pre-trained model and introduces a trainable Point Cloud Spectral Adapter (PCSA) to finetune parameters in the spectral domain.
Extensive experiments on challenging point cloud datasets demonstrate that Point GST not only outperforms its fully finetuning counterpart but also significantly reduces trainable parameters.
arXiv Detail & Related papers (2024-10-10T17:00:04Z) - P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
We tackle the task of point cloud denoising through a novel framework that adapts Diffusion Schr"odinger bridges to points clouds.
Experiments on object datasets show that P2P-Bridge achieves significant improvements over existing methods.
arXiv Detail & Related papers (2024-08-29T08:00:07Z) - AD-PT: Autonomous Driving Pre-Training with Large-scale Point Cloud
Dataset [25.935496432142976]
It is a long-term vision for Autonomous Driving (AD) community that the perception models can learn from a large-scale point cloud dataset.
We formulate the point-cloud pre-training task as a semi-supervised problem, which leverages the few-shot labeled and massive unlabeled point-cloud data.
We achieve significant performance gains on a series of downstream perception benchmarks including nuScenes, and KITTI, under different baseline models.
arXiv Detail & Related papers (2023-06-01T12:32:52Z) - GeoMAE: Masked Geometric Target Prediction for Self-supervised Point
Cloud Pre-Training [16.825524577372473]
We introduce a point cloud representation learning framework, based on geometric feature reconstruction.
We identify three self-supervised learning objectives to peculiar point clouds, namely centroid prediction, normal estimation, and curvature prediction.
Our pipeline is conceptually simple and it consists of two major steps: first, it randomly masks out groups of points, followed by a Transformer-based point cloud encoder.
arXiv Detail & Related papers (2023-05-15T17:14:55Z) - PointPatchMix: Point Cloud Mixing with Patch Scoring [58.58535918705736]
We propose PointPatchMix, which mixes point clouds at the patch level and generates content-based targets for mixed point clouds.
Our approach preserves local features at the patch level, while the patch scoring module assigns targets based on the content-based significance score from a pre-trained teacher model.
With Point-MAE as our baseline, our model surpasses previous methods by a significant margin, achieving 86.3% accuracy on ScanObjectNN and 94.1% accuracy on ModelNet40.
arXiv Detail & Related papers (2023-03-12T14:49:42Z) - Upsampling Autoencoder for Self-Supervised Point Cloud Learning [11.19408173558718]
We propose a self-supervised pretraining model for point cloud learning without human annotations.
Upsampling operation encourages the network to capture both high-level semantic information and low-level geometric information of the point cloud.
We find that our UAE outperforms previous state-of-the-art methods in shape classification, part segmentation and point cloud upsampling tasks.
arXiv Detail & Related papers (2022-03-21T07:20:37Z) - A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud
Completion [69.32451612060214]
Real-scanned 3D point clouds are often incomplete, and it is important to recover complete point clouds for downstream applications.
Most existing point cloud completion methods use Chamfer Distance (CD) loss for training.
We propose a novel Point Diffusion-Refinement (PDR) paradigm for point cloud completion.
arXiv Detail & Related papers (2021-12-07T06:59:06Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
It is expensive and tedious to obtain large scale paired sparse-canned point sets for training from real scanned sparse data.
We propose a self-supervised point cloud upsampling network, named SPU-Net, to capture the inherent upsampling patterns of points lying on the underlying object surface.
We conduct various experiments on both synthetic and real-scanned datasets, and the results demonstrate that we achieve comparable performance to the state-of-the-art supervised methods.
arXiv Detail & Related papers (2020-12-08T14:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.