A Universal Model of Floquet Operator Krylov Space
- URL: http://arxiv.org/abs/2311.15116v3
- Date: Fri, 04 Oct 2024 17:08:26 GMT
- Title: A Universal Model of Floquet Operator Krylov Space
- Authors: Hsiu-Chung Yeh, Aditi Mitra,
- Abstract summary: It is shown that the stroboscopic time-evolution under a Floquet unitary, in any spatial dimension, can be mapped to an operator Krylov space.
It is shown that the Floquet dynamics share certain universal features characterized by how the Krylov parameters vary in the topological phase diagram of the Floquet TFIM with homogeneous couplings.
- Score: 0.0
- License:
- Abstract: It is shown that the stroboscopic time-evolution under a Floquet unitary, in any spatial dimension, and of any Hermitian operator, can be mapped to an operator Krylov space which is identical to that generated by the edge operator of the non-interacting Floquet transverse-field Ising model (TFIM) in one-spatial dimension, and with inhomogeneous Ising and transverse field couplings. The latter has four topological phases reflected by the absence (topologically trivial) or presence (topologically non-trivial) of edge modes at $0$ and/or $\pi$ quasi-energies. It is shown that the Floquet dynamics share certain universal features characterized by how the Krylov parameters vary in the topological phase diagram of the Floquet TFIM with homogeneous couplings. These results are highlighted through examples, all chosen for numerical convenience to be in one spatial dimension: non-integrable Floquet spin $1/2$ chains and Floquet $Z_3$ clock model where the latter hosts period-tripled edge modes.
Related papers
- Moment method and continued fraction expansion in Floquet Operator Krylov Space [0.0]
Recursion methods map complex dynamics to an effective non-interacting problem in one dimension.
We present an application of this showing that a moment method exists where given an autocorrelation function, one can construct the corresponding Krylov angles.
We highlight certain special cases: stable $m$-periodic dynamics derived using the method of continued fractions, exponentially decaying and power-law decaying stroboscopic dynamics.
arXiv Detail & Related papers (2024-10-19T21:59:29Z) - Simultaneous symmetry breaking in spontaneous Floquet states: Floquet-Nambu-Goldstone modes, Floquet thermodynamics, and the time operator [49.1574468325115]
We study simultaneous symmetry-breaking in a spontaneous Floquet state, focusing on the specific case of an atomic condensate.
We first describe the quantization of the Nambu-Goldstone (NG) modes for a stationary state simultaneously breaking several symmetries of the Hamiltonian.
We extend the formalism to Floquet states simultaneously breaking several symmetries, where Goldstone theorem translates into the emergence of Floquet-Nambu-Goldstone modes with zero quasi-energy.
arXiv Detail & Related papers (2024-02-16T16:06:08Z) - Dynamical characterization of $Z_{2}$ Floquet topological phases via quantum quenches [4.927579219242575]
We develop the first full and unified dynamical characterization theory for the $Z_2$ Floquet topological phases.
By measuring the minimal information of Floquet bands via the stroboscopic time-averaged spin polarizations, we show that the topological spin texture patterns emerging on certain discrete momenta of Brillouin zone.
Our work provides a highly feasible way to detect the $Z_2$ Floquet topology and completes the dynamical characterization for the full classes of Floquet topological phases.
arXiv Detail & Related papers (2023-10-31T19:43:08Z) - Locality of Spontaneous Symmetry Breaking and Universal Spacing
Distribution of Topological Defects Formed Across a Phase Transition [62.997667081978825]
A continuous phase transition results in the formation of topological defects with a density predicted by the Kibble-Zurek mechanism (KZM)
We characterize the spatial distribution of point-like topological defects in the resulting nonequilibrium state and model it using a Poisson point process in arbitrary spatial dimension with KZM density.
arXiv Detail & Related papers (2022-02-23T19:00:06Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - Wave functions for high-symmetry, thin microstrip antennas and
two-dimensional quantum boxes [48.7576911714538]
For a spinless quantum particle in a one-dimensional box or an electromagnetic wave in a one-dimensional cavity, the respective Dirichlet and Neumann boundary conditions both lead to non-degenerate wave functions.
In two spatial dimensions, the symmetry of the box or microstrip antenna is an important feature that has often been overlooked in the literature.
arXiv Detail & Related papers (2021-08-18T00:57:42Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Dual topological characterization of non-Hermitian Floquet phases [0.0]
We introduce a dual scheme to characterize the topology of non-Hermitian Floquet systems in momentum space and in real space.
Our results indicate that a dual characterization of non-Hermitian Floquet topological matter is necessary and also feasible.
arXiv Detail & Related papers (2020-09-28T05:01:28Z) - Non-Hermitian Floquet phases with even-integer topological invariants in
a periodically quenched two-leg ladder [0.0]
Periodically driven non-Hermitian systems could possess exotic nonequilibrium phases with unique topological, dynamical and transport properties.
We introduce an experimentally realizable two-leg ladder model subjecting to both time-periodic quenches and non-Hermitian effects.
Our work thus introduces a new type of non-Hermitian Floquet topological matter, and further reveals the richness of topology and dynamics in driven open systems.
arXiv Detail & Related papers (2020-06-16T03:22:53Z) - Unified theory to characterize Floquet topological phases by quench
dynamics [6.496235214212858]
We propose a unified theory based on quantum quenches to characterize generic $d$-dimensional ($d$D) Floquet topological phases.
For a $d$D phase which is initially static and trivial, we introduce the quench dynamics by suddenly turning on the periodic driving.
This prediction provides a simple and unified characterization, in which one can not only extract the number of conventional and anomalous Floquet boundary modes, but also identify the topologically protected singularities in the phase bands.
arXiv Detail & Related papers (2020-04-29T08:18:22Z) - SU$(3)_1$ Chiral Spin Liquid on the Square Lattice: a View from
Symmetric PEPS [55.41644538483948]
Quantum spin liquids can be faithfully represented and efficiently characterized within the framework of Projectedangled Pair States (PEPS)
Characteristic features are revealed by the entanglement spectrum (ES) on an infinitely long cylinder.
Special features in the ES are shown to be in correspondence with bulk anyonic correlations, indicating a fine structure in the holographic bulk-edge correspondence.
arXiv Detail & Related papers (2019-12-31T16:30:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.