ProtoArgNet: Interpretable Image Classification with Super-Prototypes and Argumentation [Technical Report]
- URL: http://arxiv.org/abs/2311.15438v2
- Date: Wed, 21 Aug 2024 22:29:08 GMT
- Title: ProtoArgNet: Interpretable Image Classification with Super-Prototypes and Argumentation [Technical Report]
- Authors: Hamed Ayoobi, Nico Potyka, Francesca Toni,
- Abstract summary: ProtoArgNet is a novel interpretable deep neural architecture for image classification in the spirit of prototypical-part-learning.
ProtoArgNet uses super-prototypes that combine prototypical-parts into a unified class representation.
We demonstrate on several datasets that ProtoArgNet outperforms state-of-the-art prototypical-part-learning approaches.
- Score: 17.223442899324482
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We propose ProtoArgNet, a novel interpretable deep neural architecture for image classification in the spirit of prototypical-part-learning as found, e.g., in ProtoPNet. While earlier approaches associate every class with multiple prototypical-parts, ProtoArgNet uses super-prototypes that combine prototypical-parts into a unified class representation. This is done by combining local activations of prototypes in an MLP-like manner, enabling the localization of prototypes and learning (non-linear) spatial relationships among them. By leveraging a form of argumentation, ProtoArgNet is capable of providing both supporting (i.e. `this looks like that') and attacking (i.e. `this differs from that') explanations. We demonstrate on several datasets that ProtoArgNet outperforms state-of-the-art prototypical-part-learning approaches. Moreover, the argumentation component in ProtoArgNet is customisable to the user's cognitive requirements by a process of sparsification, which leads to more compact explanations compared to state-of-the-art approaches.
Related papers
- Multi-Scale Grouped Prototypes for Interpretable Semantic Segmentation [7.372346036256517]
Prototypical part learning is emerging as a promising approach for making semantic segmentation interpretable.
We propose a method for interpretable semantic segmentation that leverages multi-scale image representation for prototypical part learning.
Experiments conducted on Pascal VOC, Cityscapes, and ADE20K demonstrate that the proposed method increases model sparsity, improves interpretability over existing prototype-based methods, and narrows the performance gap with the non-interpretable counterpart models.
arXiv Detail & Related papers (2024-09-14T17:52:59Z) - Rethinking Person Re-identification from a Projection-on-Prototypes
Perspective [84.24742313520811]
Person Re-IDentification (Re-ID) as a retrieval task, has achieved tremendous development over the past decade.
We propose a new baseline ProNet, which innovatively reserves the function of the classifier at the inference stage.
Experiments on four benchmarks demonstrate that our proposed ProNet is simple yet effective, and significantly beats previous baselines.
arXiv Detail & Related papers (2023-08-21T13:38:10Z) - Prototype-based Embedding Network for Scene Graph Generation [105.97836135784794]
Current Scene Graph Generation (SGG) methods explore contextual information to predict relationships among entity pairs.
Due to the diverse visual appearance of numerous possible subject-object combinations, there is a large intra-class variation within each predicate category.
Prototype-based Embedding Network (PE-Net) models entities/predicates with prototype-aligned compact and distinctive representations.
PL is introduced to help PE-Net efficiently learn such entitypredicate matching, and Prototype Regularization (PR) is devised to relieve the ambiguous entity-predicate matching.
arXiv Detail & Related papers (2023-03-13T13:30:59Z) - Rethinking Semantic Segmentation: A Prototype View [126.59244185849838]
We present a nonparametric semantic segmentation model based on non-learnable prototypes.
Our framework yields compelling results over several datasets.
We expect this work will provoke a rethink of the current de facto semantic segmentation model design.
arXiv Detail & Related papers (2022-03-28T21:15:32Z) - Deformable ProtoPNet: An Interpretable Image Classifier Using Deformable Prototypes [7.8515366468594765]
We present a deformable part network (Deformable ProtoPNet) that integrates the power of deep learning and the interpretability of case-based reasoning.
This model classifies input images by comparing them with prototypes learned during training, yielding explanations in the form of "this looks like that"
arXiv Detail & Related papers (2021-11-29T22:38:13Z) - APANet: Adaptive Prototypes Alignment Network for Few-Shot Semantic
Segmentation [56.387647750094466]
Few-shot semantic segmentation aims to segment novel-class objects in a given query image with only a few labeled support images.
Most advanced solutions exploit a metric learning framework that performs segmentation through matching each query feature to a learned class-specific prototype.
We present an adaptive prototype representation by introducing class-specific and class-agnostic prototypes.
arXiv Detail & Related papers (2021-11-24T04:38:37Z) - Dual Prototypical Contrastive Learning for Few-shot Semantic
Segmentation [55.339405417090084]
We propose a dual prototypical contrastive learning approach tailored to the few-shot semantic segmentation (FSS) task.
The main idea is to encourage the prototypes more discriminative by increasing inter-class distance while reducing intra-class distance in prototype feature space.
We demonstrate that the proposed dual contrastive learning approach outperforms state-of-the-art FSS methods on PASCAL-5i and COCO-20i datasets.
arXiv Detail & Related papers (2021-11-09T08:14:50Z) - ProtoPShare: Prototype Sharing for Interpretable Image Classification
and Similarity Discovery [9.36640530008137]
We introduce ProtoPShare, a self-explained method that incorporates the paradigm of prototypical parts to explain its predictions.
The main novelty of the ProtoPShare is its ability to efficiently share prototypical parts between the classes thanks to our data-dependent merge-pruning.
We verify our findings on two datasets, the CUB-200-2011 and the Stanford Cars.
arXiv Detail & Related papers (2020-11-29T11:23:05Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
We propose a novel few-shot semantic segmentation framework based on the prototype representation.
Our key idea is to decompose the holistic class representation into a set of part-aware prototypes.
We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes.
arXiv Detail & Related papers (2020-07-13T11:03:09Z) - Prototype Refinement Network for Few-Shot Segmentation [6.777019450570474]
We propose a Prototype Refinement Network (PRNet) to attack the challenge of few-shot segmentation.
It firstly learns to bidirectionally extract prototypes from both support and query images of the known classes.
PRNet significantly outperforms existing methods by a large margin of 13.1% in 1-shot setting.
arXiv Detail & Related papers (2020-02-10T07:06:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.