Automated discovery of trade-off between utility, privacy and fairness
in machine learning models
- URL: http://arxiv.org/abs/2311.15691v1
- Date: Mon, 27 Nov 2023 10:28:44 GMT
- Title: Automated discovery of trade-off between utility, privacy and fairness
in machine learning models
- Authors: Bogdan Ficiu, Neil D. Lawrence, Andrei Paleyes
- Abstract summary: We show how PFairDP can be used to replicate known results that were achieved through manual constraint setting process.
We further demonstrate effectiveness of PFairDP with experiments on multiple models and datasets.
- Score: 8.328861861105889
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning models are deployed as a central component in decision
making and policy operations with direct impact on individuals' lives. In order
to act ethically and comply with government regulations, these models need to
make fair decisions and protect the users' privacy. However, such requirements
can come with decrease in models' performance compared to their potentially
biased, privacy-leaking counterparts. Thus the trade-off between fairness,
privacy and performance of ML models emerges, and practitioners need a way of
quantifying this trade-off to enable deployment decisions. In this work we
interpret this trade-off as a multi-objective optimization problem, and propose
PFairDP, a pipeline that uses Bayesian optimization for discovery of
Pareto-optimal points between fairness, privacy and utility of ML models. We
show how PFairDP can be used to replicate known results that were achieved
through manual constraint setting process. We further demonstrate effectiveness
of PFairDP with experiments on multiple models and datasets.
Related papers
- Efficient and Private: Memorisation under differentially private parameter-efficient fine-tuning in language models [2.3281513013731145]
Fine-tuning large language models (LLMs) for specific tasks introduces privacy risks, as models may inadvertently memorise and leak sensitive training data.
Differential Privacy (DP) offers a solution to mitigate these risks, but introduces significant computational and performance trade-offs.
We show that PEFT methods achieve comparable performance to standard fine-tuning while requiring fewer parameters and significantly reducing privacy leakage.
arXiv Detail & Related papers (2024-11-24T13:17:36Z) - Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - CorBin-FL: A Differentially Private Federated Learning Mechanism using Common Randomness [6.881974834597426]
Federated learning (FL) has emerged as a promising framework for distributed machine learning.
We introduce CorBin-FL, a privacy mechanism that uses correlated binary quantization to achieve differential privacy.
We also propose AugCorBin-FL, an extension that, in addition to PLDP, user-level and sample-level central differential privacy guarantees.
arXiv Detail & Related papers (2024-09-20T00:23:44Z) - Self-Augmented Preference Optimization: Off-Policy Paradigms for Language Model Alignment [104.18002641195442]
We introduce Self-Augmented Preference Optimization (SAPO), an effective and scalable training paradigm that does not require existing paired data.
Building on the self-play concept, which autonomously generates negative responses, we further incorporate an off-policy learning pipeline to enhance data exploration and exploitation.
arXiv Detail & Related papers (2024-05-31T14:21:04Z) - Naturally Private Recommendations with Determinantal Point Processes [0.6249768559720122]
We discuss Determinantal Point Processes (DPPs) which balance recommendations based on both the popularity and the diversity of the content.
We conclude by proposing simple alternatives to DPPs which would make them more efficient with respect to their privacy-utility trade-off.
arXiv Detail & Related papers (2024-05-22T14:20:56Z) - FairDP: Certified Fairness with Differential Privacy [59.56441077684935]
This paper introduces FairDP, a novel mechanism designed to achieve certified fairness with differential privacy (DP)
FairDP independently trains models for distinct individual groups, using group-specific clipping terms to assess and bound the disparate impacts of DP.
Extensive theoretical and empirical analyses validate the efficacy of FairDP and improved trade-offs between model utility, privacy, and fairness compared with existing methods.
arXiv Detail & Related papers (2023-05-25T21:07:20Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Learning with Impartiality to Walk on the Pareto Frontier of Fairness,
Privacy, and Utility [28.946180502706504]
We argue that machine learning pipelines should not favor one objective over another.
We propose impartially-specified models that show the inherent trade-offs between the objectives.
We provide an answer to the question of where fairness mitigation should be integrated within a privacy-aware ML pipeline.
arXiv Detail & Related papers (2023-02-17T23:23:45Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
We take a hybrid approach, combining model predictive control (MPC) with a learned model and model-free policy learning.
We find that well-tuned model-free agents are strong baselines even for high DoF control problems.
We show that it is possible to distil a model-based planner into a policy that amortizes the planning without any loss of performance.
arXiv Detail & Related papers (2021-10-07T12:00:40Z) - Fair Bayesian Optimization [25.80374249896801]
We introduce a general constrained Bayesian optimization framework to optimize the performance of any machine learning (ML) model.
We apply BO with fairness constraints to a range of popular models, including random forests, boosting, and neural networks.
We show that our approach is competitive with specialized techniques that enforce model-specific fairness constraints.
arXiv Detail & Related papers (2020-06-09T08:31:08Z) - Learnable Bernoulli Dropout for Bayesian Deep Learning [53.79615543862426]
Learnable Bernoulli dropout (LBD) is a new model-agnostic dropout scheme that considers the dropout rates as parameters jointly optimized with other model parameters.
LBD leads to improved accuracy and uncertainty estimates in image classification and semantic segmentation.
arXiv Detail & Related papers (2020-02-12T18:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.