Learning Disentangled Identifiers for Action-Customized Text-to-Image Generation
- URL: http://arxiv.org/abs/2311.15841v5
- Date: Fri, 10 May 2024 08:01:10 GMT
- Title: Learning Disentangled Identifiers for Action-Customized Text-to-Image Generation
- Authors: Siteng Huang, Biao Gong, Yutong Feng, Xi Chen, Yuqian Fu, Yu Liu, Donglin Wang,
- Abstract summary: This study focuses on a novel task in text-to-image (T2I) generation, namely action customization.
The objective of this task is to learn the co-existing action from limited data and generalize it to unseen humans or even animals.
- Score: 34.11373539564126
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study focuses on a novel task in text-to-image (T2I) generation, namely action customization. The objective of this task is to learn the co-existing action from limited data and generalize it to unseen humans or even animals. Experimental results show that existing subject-driven customization methods fail to learn the representative characteristics of actions and struggle in decoupling actions from context features, including appearance. To overcome the preference for low-level features and the entanglement of high-level features, we propose an inversion-based method Action-Disentangled Identifier (ADI) to learn action-specific identifiers from the exemplar images. ADI first expands the semantic conditioning space by introducing layer-wise identifier tokens, thereby increasing the representational richness while distributing the inversion across different features. Then, to block the inversion of action-agnostic features, ADI extracts the gradient invariance from the constructed sample triples and masks the updates of irrelevant channels. To comprehensively evaluate the task, we present an ActionBench that includes a variety of actions, each accompanied by meticulously selected samples. Both quantitative and qualitative results show that our ADI outperforms existing baselines in action-customized T2I generation. Our project page is at https://adi-t2i.github.io/ADI.
Related papers
- Spatio-Temporal Context Prompting for Zero-Shot Action Detection [13.22912547389941]
We propose a method which can effectively leverage the rich knowledge of visual-language models to perform Person-Context Interaction.
To address the challenge of recognizing distinct actions by multiple people at the same timestamp, we design the Interest Token Spotting mechanism.
Our method achieves superior results compared to previous approaches and can be further extended to multi-action videos.
arXiv Detail & Related papers (2024-08-28T17:59:05Z) - Action Detection via an Image Diffusion Process [19.013962634522485]
Action detection aims to localize the starting and ending points of action instances in untrimmed videos.
We tackle action detection via a three-image generation process to generate starting point, ending point and action-class predictions as images.
Our ADI-Diff framework achieves state-of-the-art results on two widely-used datasets.
arXiv Detail & Related papers (2024-04-01T11:12:06Z) - Exploring Fine-Grained Representation and Recomposition for Cloth-Changing Person Re-Identification [78.52704557647438]
We propose a novel FIne-grained Representation and Recomposition (FIRe$2$) framework to tackle both limitations without any auxiliary annotation or data.
Experiments demonstrate that FIRe$2$ can achieve state-of-the-art performance on five widely-used cloth-changing person Re-ID benchmarks.
arXiv Detail & Related papers (2023-08-21T12:59:48Z) - Language-free Compositional Action Generation via Decoupling Refinement [67.50452446686725]
We introduce a novel framework to generate compositional actions without reliance on language auxiliaries.
Our approach consists of three main components: Action Coupling, Conditional Action Generation, and Decoupling Refinement.
arXiv Detail & Related papers (2023-07-07T12:00:38Z) - Action Sensitivity Learning for Temporal Action Localization [35.65086250175736]
We propose an Action Sensitivity Learning framework (ASL) to tackle the task of temporal action localization.
We first introduce a lightweight Action Sensitivity Evaluator to learn the action sensitivity at the class level and instance level, respectively.
Based on the action sensitivity of each frame, we design an Action Sensitive Contrastive Loss to enhance features, where the action-aware frames are sampled as positive pairs to push away the action-irrelevant frames.
arXiv Detail & Related papers (2023-05-25T04:19:14Z) - Continual Object Detection via Prototypical Task Correlation Guided
Gating Mechanism [120.1998866178014]
We present a flexible framework for continual object detection via pRotOtypical taSk corrElaTion guided gaTingAnism (ROSETTA)
Concretely, a unified framework is shared by all tasks while task-aware gates are introduced to automatically select sub-models for specific tasks.
Experiments on COCO-VOC, KITTI-Kitchen, class-incremental detection on VOC and sequential learning of four tasks show that ROSETTA yields state-of-the-art performance.
arXiv Detail & Related papers (2022-05-06T07:31:28Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
We propose a two-stage Activation-to-Saliency (A2S) framework that effectively generates high-quality saliency cues.
No human annotations are involved in our framework during the whole training process.
Our framework reports significant performance compared with existing USOD methods.
arXiv Detail & Related papers (2021-12-07T11:54:06Z) - Few-Shot Fine-Grained Action Recognition via Bidirectional Attention and
Contrastive Meta-Learning [51.03781020616402]
Fine-grained action recognition is attracting increasing attention due to the emerging demand of specific action understanding in real-world applications.
We propose a few-shot fine-grained action recognition problem, aiming to recognize novel fine-grained actions with only few samples given for each class.
Although progress has been made in coarse-grained actions, existing few-shot recognition methods encounter two issues handling fine-grained actions.
arXiv Detail & Related papers (2021-08-15T02:21:01Z) - Visual Transformer for Task-aware Active Learning [49.903358393660724]
We present a novel pipeline for pool-based Active Learning.
Our method exploits accessible unlabelled examples during training to estimate their co-relation with the labelled examples.
Visual Transformer models non-local visual concept dependency between labelled and unlabelled examples.
arXiv Detail & Related papers (2021-06-07T17:13:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.