Optimal Transport Aggregation for Visual Place Recognition
- URL: http://arxiv.org/abs/2311.15937v2
- Date: Thu, 27 Jun 2024 08:21:16 GMT
- Title: Optimal Transport Aggregation for Visual Place Recognition
- Authors: Sergio Izquierdo, Javier Civera,
- Abstract summary: We introduce SALAD, which reformulates NetVLAD's soft-assignment of local features to clusters as an optimal transport problem.
In SALAD, we consider both feature-to-cluster and cluster-to-feature relations and we also introduce a 'dustbin' cluster, designed to selectively discard features deemed non-informative.
Our single-stage method surpasses single-stage baselines in public VPR datasets, but also surpasses two-stage methods that add a re-ranking with significantly higher cost.
- Score: 9.192660643226372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of Visual Place Recognition (VPR) aims to match a query image against references from an extensive database of images from different places, relying solely on visual cues. State-of-the-art pipelines focus on the aggregation of features extracted from a deep backbone, in order to form a global descriptor for each image. In this context, we introduce SALAD (Sinkhorn Algorithm for Locally Aggregated Descriptors), which reformulates NetVLAD's soft-assignment of local features to clusters as an optimal transport problem. In SALAD, we consider both feature-to-cluster and cluster-to-feature relations and we also introduce a 'dustbin' cluster, designed to selectively discard features deemed non-informative, enhancing the overall descriptor quality. Additionally, we leverage and fine-tune DINOv2 as a backbone, which provides enhanced description power for the local features, and dramatically reduces the required training time. As a result, our single-stage method not only surpasses single-stage baselines in public VPR datasets, but also surpasses two-stage methods that add a re-ranking with significantly higher cost. Code and models are available at https://github.com/serizba/salad.
Related papers
- VLAD-BuFF: Burst-aware Fast Feature Aggregation for Visual Place Recognition [23.173085268845384]
This paper introduces VLAD-BuFF, a self-similarity based feature discounting mechanism to learn Burst-aware features within end-to-end VPR training.
We benchmark our method on 9 public datasets, where VLAD-BuFF sets a new state of the art.
Our method is able to maintain its high recall even for 12x reduced local feature dimensions, thus enabling fast feature aggregation without compromising on recall.
arXiv Detail & Related papers (2024-09-28T09:44:08Z) - A Refreshed Similarity-based Upsampler for Direct High-Ratio Feature Upsampling [54.05517338122698]
We propose an explicitly controllable query-key feature alignment from both semantic-aware and detail-aware perspectives.
We also develop a fine-grained neighbor selection strategy on HR features, which is simple yet effective for alleviating mosaic artifacts.
Our proposed ReSFU framework consistently achieves satisfactory performance on different segmentation applications.
arXiv Detail & Related papers (2024-07-02T14:12:21Z) - ClusVPR: Efficient Visual Place Recognition with Clustering-based
Weighted Transformer [13.0858576267115]
We present ClusVPR, a novel approach that tackles the specific issues of redundant information in duplicate regions and representations of small objects.
ClusVPR introduces a unique paradigm called Clustering-based weighted Transformer Network (CWTNet)
We also introduce the optimized-VLAD layer that significantly reduces the number of parameters and enhances model efficiency.
arXiv Detail & Related papers (2023-10-06T09:01:15Z) - High-fidelity Pseudo-labels for Boosting Weakly-Supervised Segmentation [17.804090651425955]
Image-level weakly-supervised segmentation (WSSS) reduces the usually vast data annotation cost by surrogate segmentation masks during training.
Our work is based on two techniques for improving CAMs; importance sampling, which is a substitute for GAP, and the feature similarity loss.
We reformulate both techniques based on binomial posteriors of multiple independent binary problems.
This has two benefits; their performance is improved and they become more general, resulting in an add-on method that can boost virtually any WSSS method.
arXiv Detail & Related papers (2023-04-05T17:43:57Z) - Spatial-Aware Token for Weakly Supervised Object Localization [137.0570026552845]
We propose a task-specific spatial-aware token to condition localization in a weakly supervised manner.
Experiments show that the proposed SAT achieves state-of-the-art performance on both CUB-200 and ImageNet, with 98.45% and 73.13% GT-known Loc.
arXiv Detail & Related papers (2023-03-18T15:38:17Z) - Boosting Few-shot Fine-grained Recognition with Background Suppression
and Foreground Alignment [53.401889855278704]
Few-shot fine-grained recognition (FS-FGR) aims to recognize novel fine-grained categories with the help of limited available samples.
We propose a two-stage background suppression and foreground alignment framework, which is composed of a background activation suppression (BAS) module, a foreground object alignment (FOA) module, and a local to local (L2L) similarity metric.
Experiments conducted on multiple popular fine-grained benchmarks demonstrate that our method outperforms the existing state-of-the-art by a large margin.
arXiv Detail & Related papers (2022-10-04T07:54:40Z) - Learning to Aggregate Multi-Scale Context for Instance Segmentation in
Remote Sensing Images [28.560068780733342]
A novel context aggregation network (CATNet) is proposed to improve the feature extraction process.
The proposed model exploits three lightweight plug-and-play modules, namely dense feature pyramid network (DenseFPN), spatial context pyramid ( SCP), and hierarchical region of interest extractor (HRoIE)
arXiv Detail & Related papers (2021-11-22T08:55:25Z) - Inter-Image Communication for Weakly Supervised Localization [77.2171924626778]
Weakly supervised localization aims at finding target object regions using only image-level supervision.
We propose to leverage pixel-level similarities across different objects for learning more accurate object locations.
Our method achieves the Top-1 localization error rate of 45.17% on the ILSVRC validation set.
arXiv Detail & Related papers (2020-08-12T04:14:11Z) - Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization [53.99850033746663]
We study the problem of learning localization model on target classes with weakly supervised image labels.
In this work, we argue that learning only an objectness function is a weak form of knowledge transfer.
Experiments on the COCO and ILSVRC 2013 detection datasets show that the performance of the localization model improves significantly with the inclusion of pairwise similarity function.
arXiv Detail & Related papers (2020-03-18T17:53:33Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.