Pre-trained Language Models Do Not Help Auto-regressive Text-to-Image Generation
- URL: http://arxiv.org/abs/2311.16201v2
- Date: Wed, 25 Sep 2024 17:58:21 GMT
- Title: Pre-trained Language Models Do Not Help Auto-regressive Text-to-Image Generation
- Authors: Yuhui Zhang, Brandon McKinzie, Zhe Gan, Vaishaal Shankar, Alexander Toshev,
- Abstract summary: We adapt a pre-trained language model for auto-regressive text-to-image generation.
We find that pre-trained language models offer limited help.
- Score: 82.5217996570387
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in image tokenizers, such as VQ-VAE, have enabled text-to-image generation using auto-regressive methods, similar to language modeling. However, these methods have yet to leverage pre-trained language models, despite their adaptability to various downstream tasks. In this work, we explore this gap by adapting a pre-trained language model for auto-regressive text-to-image generation, and find that pre-trained language models offer limited help. We provide a two-fold explanation by analyzing tokens from each modality. First, we demonstrate that image tokens possess significantly different semantics compared to text tokens, rendering pre-trained language models no more effective in modeling them than randomly initialized ones. Second, the text tokens in the image-text datasets are too simple compared to normal language model pre-training data, which causes the catastrophic degradation of language models' capability.
Related papers
- Expedited Training of Visual Conditioned Language Generation via
Redundancy Reduction [61.16125290912494]
$textEVL_textGen$ is a framework designed for the pre-training of visually conditioned language generation models.
We show that our approach accelerates the training of vision-language models by a factor of 5 without a noticeable impact on overall performance.
arXiv Detail & Related papers (2023-10-05T03:40:06Z) - Language Quantized AutoEncoders: Towards Unsupervised Text-Image
Alignment [81.73717488887938]
Language-Quantized AutoEncoder (LQAE) learns to align text-image data in an unsupervised manner by leveraging pretrained language models.
LQAE learns to represent similar images with similar clusters of text tokens, thereby aligning these two modalities without the use of aligned text-image pairs.
This enables few-shot image classification with large language models (e.g., GPT-3) as well as linear classification of images based on BERT text features.
arXiv Detail & Related papers (2023-02-02T06:38:44Z) - Grounding Language Models to Images for Multimodal Inputs and Outputs [89.30027812161686]
We propose an efficient method to ground pretrained text-only language models to the visual domain.
We process arbitrarily interleaved image-and-text data, and generate text interleaved with retrieved images.
arXiv Detail & Related papers (2023-01-31T18:33:44Z) - What do Large Language Models Learn beyond Language? [10.9650651784511]
We find that pretrained models significantly outperform comparable non-pretrained neural models.
Experiments surprisingly reveal that the positive effects of pre-training persist even when pretraining on multi-lingual text or computer code.
Our findings suggest a hitherto unexplored deep connection between pre-training and inductive learning abilities of language models.
arXiv Detail & Related papers (2022-10-21T23:43:13Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
We show that recent advances in each modality, CLIP image representations and scaling of language models, do not consistently improve multimodal self-rationalization of tasks with multimodal inputs.
Our findings call for a backbone modelling approach that can be built on to advance text generation from images and text beyond image captioning.
arXiv Detail & Related papers (2022-05-24T00:52:40Z) - LAFITE: Towards Language-Free Training for Text-to-Image Generation [83.2935513540494]
We propose the first work to train text-to-image generation models without any text data.
Our method leverages the well-aligned multi-modal semantic space of the powerful pre-trained CLIP model.
We obtain state-of-the-art results in the standard text-to-image generation tasks.
arXiv Detail & Related papers (2021-11-27T01:54:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.