Entanglement Hamiltonian of a nonrelativistic Fermi gas
- URL: http://arxiv.org/abs/2311.16348v2
- Date: Tue, 14 May 2024 07:36:47 GMT
- Title: Entanglement Hamiltonian of a nonrelativistic Fermi gas
- Authors: Viktor Eisler,
- Abstract summary: We study the entanglement Hamiltonian for a spherical domain in the ground state of a nonrelativistic free-fermion gas in arbitrary dimensions.
We show that the entanglement spectrum in each sector is identical to that of a hopping chain in a linear potential, with the angular momentum playing the role of the subsystem boundary.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the entanglement Hamiltonian for a spherical domain in the ground state of a nonrelativistic free-fermion gas in arbitrary dimensions. Decomposed into a set of radial entanglement Hamiltonians, we show that the entanglement spectrum in each sector is identical to that of a hopping chain in a linear potential, with the angular momentum playing the role of the subsystem boundary. Furthermore, the eigenfunctions follow from a commuting differential operator that has exactly the form predicted by conformal field theory. Rescaled by the radial Fermi velocity, this operator gives a perfect approximation of the entanglement Hamiltonian, except for large angular momenta that belong to the edge regime in the analogous gradient chain. One thus finds that the conformal field theory result becomes asymptotically exact only in one dimension.
Related papers
- On the Bisognano-Wichmann entanglement Hamiltonian of nonrelativistic fermions [0.0]
We study the ground-state entanglement Hamiltonian of free nonrelativistic fermions for semi-infinite domains in one dimension.
We prove that the Bisognano-Wichmann form of the entanglement Hamiltonian becomes exact.
arXiv Detail & Related papers (2024-10-21T18:55:23Z) - Entanglement Hamiltonian for inhomogeneous free fermions [0.0]
We study the entanglement Hamiltonian for the ground state of one-dimensional free fermions in the presence of an inhomogeneous chemical potential.
It is shown that, for both models, conformal field theory predicts a Bisognano-Wichmann form for the entangement Hamiltonian of a half-infinite system.
arXiv Detail & Related papers (2024-03-21T18:13:10Z) - Hearing the boundary conditions of the one-dimensional Dirac operator [0.0]
We study the isospectrality problem for a relativistic free quantum particle, described by the Dirac Hamiltonian, confined in a one-dimensional ring with a junction.
arXiv Detail & Related papers (2023-11-29T11:48:46Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Machine Learning S-Wave Scattering Phase Shifts Bypassing the Radial
Schr\"odinger Equation [77.34726150561087]
We present a proof of concept machine learning model resting on a convolutional neural network capable to yield accurate scattering s-wave phase shifts.
We discuss how the Hamiltonian can serve as a guiding principle in the construction of a physically-motivated descriptor.
arXiv Detail & Related papers (2021-06-25T17:25:38Z) - Fano interference in quantum resonances from angle-resolved elastic
scattering [62.997667081978825]
We show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles in a single channel shape resonance.
We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules.
arXiv Detail & Related papers (2021-05-12T20:41:25Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Bulk-edge correspondence in the Haldane phase of the
bilinear-biquadratic spin-1 Hamiltonian [0.0]
We show that the entanglement spectrum can be described in terms of two spins-1/2 behaving as the effective spins at the end of an open chain.
In the case of non-contiguous partitions, we find that the entanglement Hamiltonian is given by the spin-1/2 Heisenberg Hamiltonian.
arXiv Detail & Related papers (2020-11-10T23:12:40Z) - Engineering entanglement Hamiltonians with strongly interacting cold
atoms in optical traps [0.0]
We propose the realization of entanglement Hamiltonians in one-dimensional critical spin systems with strongly interacting cold atoms.
We focus on reproducing the universal ratios of the entanglement spectrum for systems in two different geometries.
Our results demonstrate the possibility of measuring the entanglement spectra of the Heisenberg and XX models in a realistic cold-atom experimental setting.
arXiv Detail & Related papers (2020-07-10T08:33:00Z) - Bulk detection of time-dependent topological transitions in quenched
chiral models [48.7576911714538]
We show that the winding number of the Hamiltonian eigenstates can be read-out by measuring the mean chiral displacement of a single-particle wavefunction.
This implies that the mean chiral displacement can detect the winding number even when the underlying Hamiltonian is quenched between different topological phases.
arXiv Detail & Related papers (2020-01-16T17:44:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.