Progressive Classifier and Feature Extractor Adaptation for Unsupervised Domain Adaptation on Point Clouds
- URL: http://arxiv.org/abs/2311.16474v2
- Date: Wed, 17 Jul 2024 13:46:28 GMT
- Title: Progressive Classifier and Feature Extractor Adaptation for Unsupervised Domain Adaptation on Point Clouds
- Authors: Zicheng Wang, Zhen Zhao, Yiming Wu, Luping Zhou, Dong Xu,
- Abstract summary: Unsupervised domain adaptation (UDA) is a critical challenge in the field of point cloud analysis.
We propose a novel framework that deeply couples the classifier and feature extractor for 3D UDA.
Our PCFEA conducts 3D UDA from two distinct perspectives: macro and micro levels.
- Score: 36.596096617244655
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation (UDA) is a critical challenge in the field of point cloud analysis. Previous works tackle the problem either by feature extractor adaptation to enable a shared classifier to distinguish domain-invariant features, or by classifier adaptation to evolve the classifier to recognize target-styled source features to increase its adaptation ability. However, by learning domain-invariant features, feature extractor adaptation methods fail to encode semantically meaningful target-specific information, while classifier adaptation methods rely heavily on the accurate estimation of the target distribution. In this work, we propose a novel framework that deeply couples the classifier and feature extractor adaption for 3D UDA, dubbed Progressive Classifier and Feature Extractor Adaptation (PCFEA). Our PCFEA conducts 3D UDA from two distinct perspectives: macro and micro levels. On the macro level, we propose a progressive target-styled feature augmentation (PTFA) that establishes a series of intermediate domains to enable the model to progressively adapt to the target domain. Throughout this process, the source classifier is evolved to recognize target-styled source features (\ie, classifier adaptation). On the micro level, we develop an intermediate domain feature extractor adaptation (IDFA) that performs a compact feature alignment to encourage the target-styled feature extraction gradually. In this way, PTFA and IDFA can mutually benefit each other: IDFA contributes to the distribution estimation of PTFA while PTFA constructs smoother intermediate domains to encourage an accurate feature alignment of IDFA. We validate our method on popular benchmark datasets, where our method achieves new state-of-the-art performance. Our code is available at https://github.com/xiaoyao3302/PCFEA.
Related papers
- Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - ADAS: A Simple Active-and-Adaptive Baseline for Cross-Domain 3D Semantic
Segmentation [38.66509154973051]
We propose an Active-and-Adaptive (ADAS) baseline to enhance the weak cross-domain generalization ability of a well-trained 3D segmentation model.
ADAS performs an active sampling operation to select a maximally-informative subset from both source and target domains for effective adaptation.
ADAS is verified to be effective in many cross-domain settings including: 1) Unsupervised Domain Adaptation (UDA), which means that all samples from target domain are unlabeled; 2) Unsupervised Few-shot Domain Adaptation (UFDA), which means that only a few unlabeled samples are available in the unlabeled target domain.
arXiv Detail & Related papers (2022-12-20T16:17:40Z) - Shuffle Augmentation of Features from Unlabeled Data for Unsupervised
Domain Adaptation [21.497019000131917]
Unsupervised Domain Adaptation (UDA) is a branch of transfer learning where labels for target samples are unavailable.
In this paper, we propose Shuffle Augmentation of Features (SAF) as a novel UDA framework.
SAF learns from the target samples, adaptively distills class-aware target features, and implicitly guides the classifier to find comprehensive class borders.
arXiv Detail & Related papers (2022-01-28T07:11:05Z) - Exploring Sequence Feature Alignment for Domain Adaptive Detection
Transformers [141.70707071815653]
We propose a novel Sequence Feature Alignment (SFA) method that is specially designed for the adaptation of detection transformers.
SFA consists of a domain query-based feature alignment (DQFA) module and a token-wise feature alignment (TDA) module.
Experiments on three challenging benchmarks show that SFA outperforms state-of-the-art domain adaptive object detection methods.
arXiv Detail & Related papers (2021-07-27T07:17:12Z) - Semi-Supervised Domain Adaptation via Adaptive and Progressive Feature
Alignment [32.77436219094282]
SSDAS employs a few labeled target samples as anchors for adaptive and progressive feature alignment between labeled source samples and unlabeled target samples.
In addition, we replace the dissimilar source features by high-confidence target features continuously during the iterative training process.
Extensive experiments show the proposed SSDAS greatly outperforms a number of baselines.
arXiv Detail & Related papers (2021-06-05T09:12:50Z) - Transformer-Based Source-Free Domain Adaptation [134.67078085569017]
We study the task of source-free domain adaptation (SFDA), where the source data are not available during target adaptation.
We propose a generic and effective framework based on Transformer, named TransDA, for learning a generalized model for SFDA.
arXiv Detail & Related papers (2021-05-28T23:06:26Z) - Instance Level Affinity-Based Transfer for Unsupervised Domain
Adaptation [74.71931918541748]
We propose an instance affinity based criterion for source to target transfer during adaptation, called ILA-DA.
We first propose a reliable and efficient method to extract similar and dissimilar samples across source and target, and utilize a multi-sample contrastive loss to drive the domain alignment process.
We verify the effectiveness of ILA-DA by observing consistent improvements in accuracy over popular domain adaptation approaches on a variety of benchmark datasets.
arXiv Detail & Related papers (2021-04-03T01:33:14Z) - Your Classifier can Secretly Suffice Multi-Source Domain Adaptation [72.47706604261992]
Multi-Source Domain Adaptation (MSDA) deals with the transfer of task knowledge from multiple labeled source domains to an unlabeled target domain.
We present a different perspective to MSDA wherein deep models are observed to implicitly align the domains under label supervision.
arXiv Detail & Related papers (2021-03-20T12:44:13Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.