Scalable Label Distribution Learning for Multi-Label Classification
- URL: http://arxiv.org/abs/2311.16556v2
- Date: Thu, 03 Oct 2024 16:42:08 GMT
- Title: Scalable Label Distribution Learning for Multi-Label Classification
- Authors: Xingyu Zhao, Yuexuan An, Lei Qi, Xin Geng,
- Abstract summary: Multi-label classification (MLC) refers to the problem of tagging a given instance with a set of relevant labels.
Most existing MLC methods are based on the assumption that the correlation of two labels in each label pair is symmetric.
Most existing methods design learning processes associated with the number of labels, which makes their computational complexity a bottleneck when scaling up to large-scale output space.
- Score: 43.52928088881866
- License:
- Abstract: Multi-label classification (MLC) refers to the problem of tagging a given instance with a set of relevant labels. Most existing MLC methods are based on the assumption that the correlation of two labels in each label pair is symmetric, which is violated in many real-world scenarios. Moreover, most existing methods design learning processes associated with the number of labels, which makes their computational complexity a bottleneck when scaling up to large-scale output space. To tackle these issues, we propose a novel method named Scalable Label Distribution Learning (SLDL) for multi-label classification which can describe different labels as distributions in a latent space, where the label correlation is asymmetric and the dimension is independent of the number of labels. Specifically, SLDL first converts labels into continuous distributions within a low-dimensional latent space and leverages the asymmetric metric to establish the correlation between different labels. Then, it learns the mapping from the feature space to the latent space, resulting in the computational complexity is no longer related to the number of labels. Finally, SLDL leverages a nearest-neighbor-based strategy to decode the latent representations and obtain the final predictions. Extensive experiments illustrate that SLDL achieves very competitive classification performances with little computational consumption.
Related papers
- Label Cluster Chains for Multi-Label Classification [2.072831155509228]
Multi-label classification is a type of supervised machine learning that can simultaneously assign multiple labels to an instance.
We propose a method to chain disjoint correlated label clusters obtained by applying a partition method in the label space.
Our proposal shows that learning and chaining disjoint correlated label clusters can better explore and learn label correlations.
arXiv Detail & Related papers (2024-11-01T11:16:37Z) - Towards Imbalanced Large Scale Multi-label Classification with Partially
Annotated Labels [8.977819892091]
Multi-label classification is a widely encountered problem in daily life, where an instance can be associated with multiple classes.
In this work, we address the issue of label imbalance and investigate how to train neural networks using partial labels.
arXiv Detail & Related papers (2023-07-31T21:50:48Z) - Contrastive Label Enhancement [13.628665406039609]
We propose Contrastive Label Enhancement (ConLE) to generate high-level features by contrastive learning strategy.
We leverage the obtained high-level features to gain label distributions through a welldesigned training strategy.
arXiv Detail & Related papers (2023-05-16T14:53:07Z) - Complementary to Multiple Labels: A Correlation-Aware Correction
Approach [65.59584909436259]
We show theoretically how the estimated transition matrix in multi-class CLL could be distorted in multi-labeled cases.
We propose a two-step method to estimate the transition matrix from candidate labels.
arXiv Detail & Related papers (2023-02-25T04:48:48Z) - Dual-Perspective Semantic-Aware Representation Blending for Multi-Label
Image Recognition with Partial Labels [70.36722026729859]
We propose a dual-perspective semantic-aware representation blending (DSRB) that blends multi-granularity category-specific semantic representation across different images.
The proposed DS consistently outperforms current state-of-the-art algorithms on all proportion label settings.
arXiv Detail & Related papers (2022-05-26T00:33:44Z) - Acknowledging the Unknown for Multi-label Learning with Single Positive
Labels [65.5889334964149]
Traditionally, all unannotated labels are assumed as negative labels in single positive multi-label learning (SPML)
We propose entropy-maximization (EM) loss to maximize the entropy of predicted probabilities for all unannotated labels.
Considering the positive-negative label imbalance of unannotated labels, we propose asymmetric pseudo-labeling (APL) with asymmetric-tolerance strategies and a self-paced procedure to provide more precise supervision.
arXiv Detail & Related papers (2022-03-30T11:43:59Z) - Structured Semantic Transfer for Multi-Label Recognition with Partial
Labels [85.6967666661044]
We propose a structured semantic transfer (SST) framework that enables training multi-label recognition models with partial labels.
The framework consists of two complementary transfer modules that explore within-image and cross-image semantic correlations.
Experiments on the Microsoft COCO, Visual Genome and Pascal VOC datasets show that the proposed SST framework obtains superior performance over current state-of-the-art algorithms.
arXiv Detail & Related papers (2021-12-21T02:15:01Z) - Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced
Semi-Supervised Learning [80.05441565830726]
This paper addresses imbalanced semi-supervised learning, where heavily biased pseudo-labels can harm the model performance.
We propose a general pseudo-labeling framework to address the bias motivated by this observation.
We term the novel pseudo-labeling framework for imbalanced SSL as Distribution-Aware Semantics-Oriented (DASO) Pseudo-label.
arXiv Detail & Related papers (2021-06-10T11:58:25Z) - Enhancing Label Correlation Feedback in Multi-Label Text Classification
via Multi-Task Learning [6.1538971100140145]
We introduce a novel approach with multi-task learning to enhance label correlation feedback.
We propose two auxiliary label co-occurrence prediction tasks to enhance label correlation learning.
arXiv Detail & Related papers (2021-06-06T12:26:14Z) - Generalized Label Enhancement with Sample Correlations [24.582764493585362]
We propose two novel label enhancement methods, i.e., Label Enhancement with Sample Correlations (LESC) and generalized Label Enhancement with Sample Correlations (gLESC)
Benefitting from the sample correlations, the proposed methods can boost the performance of label enhancement.
arXiv Detail & Related papers (2020-04-07T03:32:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.