Symmetry-regularized neural ordinary differential equations
- URL: http://arxiv.org/abs/2311.16628v2
- Date: Sat, 13 Jul 2024 02:44:45 GMT
- Title: Symmetry-regularized neural ordinary differential equations
- Authors: Wenbo Hao,
- Abstract summary: This paper introduces new conservation relations in Neural ODEs using Lie symmetries in both the hidden state dynamics and the back propagation dynamics.
These conservation laws are then incorporated into the loss function as additional regularization terms, potentially enhancing the physical interpretability and generalizability of the model.
New loss functions are constructed from these conservation relations, demonstrating the applicability symmetry-regularized Neural ODE in typical modeling tasks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural ordinary differential equations (Neural ODEs) is a class of machine learning models that approximate the time derivative of hidden states using a neural network. They are powerful tools for modeling continuous-time dynamical systems, enabling the analysis and prediction of complex temporal behaviors. However, how to improve the model's stability and physical interpretability remains a challenge. This paper introduces new conservation relations in Neural ODEs using Lie symmetries in both the hidden state dynamics and the back propagation dynamics. These conservation laws are then incorporated into the loss function as additional regularization terms, potentially enhancing the physical interpretability and generalizability of the model. To illustrate this method, the paper derives Lie symmetries and conservation laws in a simple Neural ODE designed to monitor charged particles in a sinusoidal electric field. New loss functions are constructed from these conservation relations, demonstrating the applicability symmetry-regularized Neural ODE in typical modeling tasks, such as data-driven discovery of dynamical systems.
Related papers
- A scalable generative model for dynamical system reconstruction from neuroimaging data [5.777167013394619]
Data-driven inference of the generative dynamics underlying a set of observed time series is of growing interest in machine learning.
Recent breakthroughs in training techniques for state space models (SSMs) specifically geared toward dynamical systems reconstruction (DSR) enable to recover the underlying system.
We propose a novel algorithm that solves this problem and scales exceptionally well with model dimensionality and filter length.
arXiv Detail & Related papers (2024-11-05T09:45:57Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
This paper introduces a novel family of deep dynamical models designed to represent continuous-time sequence data.
We train the model using maximum likelihood estimation with Markov chain Monte Carlo.
Experiments on oscillating systems, videos and real-world state sequences (MuJoCo) illustrate that ODEs with the learnable energy-based prior outperform existing counterparts.
arXiv Detail & Related papers (2024-09-05T18:14:22Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Anamnesic Neural Differential Equations with Orthogonal Polynomial
Projections [6.345523830122166]
We propose PolyODE, a formulation that enforces long-range memory and preserves a global representation of the underlying dynamical system.
Our construction is backed by favourable theoretical guarantees and we demonstrate that it outperforms previous works in the reconstruction of past and future data.
arXiv Detail & Related papers (2023-03-03T10:49:09Z) - Neural Abstractions [72.42530499990028]
We present a novel method for the safety verification of nonlinear dynamical models that uses neural networks to represent abstractions of their dynamics.
We demonstrate that our approach performs comparably to the mature tool Flow* on existing benchmark nonlinear models.
arXiv Detail & Related papers (2023-01-27T12:38:09Z) - Stabilized Neural Ordinary Differential Equations for Long-Time
Forecasting of Dynamical Systems [1.001737665513683]
We present a data-driven modeling method that accurately captures shocks and chaotic dynamics.
We learn the right-hand-side (SRH) of an ODE by adding the outputs of two NN together where one learns a linear term and the other a nonlinear term.
Specifically, we implement this by training a sparse linear convolutional NN to learn the linear term and a dense fully-connected nonlinear NN to learn the nonlinear term.
arXiv Detail & Related papers (2022-03-29T16:10:34Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Cubature Kalman Filter Based Training of Hybrid Differential Equation
Recurrent Neural Network Physiological Dynamic Models [13.637931956861758]
We show how we can approximate missing ordinary differential equations with known ODEs using a neural network approximation.
Results indicate that this RBSE approach to training the NN parameters yields better outcomes (measurement/state estimation accuracy) than training the neural network with backpropagation.
arXiv Detail & Related papers (2021-10-12T15:38:13Z) - Liquid Time-constant Networks [117.57116214802504]
We introduce a new class of time-continuous recurrent neural network models.
Instead of declaring a learning system's dynamics by implicit nonlinearities, we construct networks of linear first-order dynamical systems.
These neural networks exhibit stable and bounded behavior, yield superior expressivity within the family of neural ordinary differential equations.
arXiv Detail & Related papers (2020-06-08T09:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.