LiveNVS: Neural View Synthesis on Live RGB-D Streams
- URL: http://arxiv.org/abs/2311.16668v2
- Date: Wed, 29 Nov 2023 11:29:45 GMT
- Title: LiveNVS: Neural View Synthesis on Live RGB-D Streams
- Authors: Laura Fink, Darius R\"uckert, Linus Franke, Joachim Keinert, Marc
Stamminger
- Abstract summary: We present LiveNVS, a system that allows for neural novel view synthesis on a live RGB-D input stream.
LiveNVS achieves state-of-the-art neural rendering quality of unknown scenes during capturing.
- Score: 4.717325308876748
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing real-time RGB-D reconstruction approaches, like Kinect Fusion, lack
real-time photo-realistic visualization. This is due to noisy, oversmoothed or
incomplete geometry and blurry textures which are fused from imperfect depth
maps and camera poses. Recent neural rendering methods can overcome many of
such artifacts but are mostly optimized for offline usage, hindering the
integration into a live reconstruction pipeline.
In this paper, we present LiveNVS, a system that allows for neural novel view
synthesis on a live RGB-D input stream with very low latency and real-time
rendering. Based on the RGB-D input stream, novel views are rendered by
projecting neural features into the target view via a densely fused depth map
and aggregating the features in image-space to a target feature map. A
generalizable neural network then translates the target feature map into a
high-quality RGB image. LiveNVS achieves state-of-the-art neural rendering
quality of unknown scenes during capturing, allowing users to virtually explore
the scene and assess reconstruction quality in real-time.
Related papers
- NeSLAM: Neural Implicit Mapping and Self-Supervised Feature Tracking With Depth Completion and Denoising [23.876281686625134]
We present NeSLAM, a framework that achieves accurate and dense depth estimation, robust camera tracking, and realistic synthesis of novel views.
Experiments on various indoor datasets demonstrate the effectiveness and accuracy of the system in reconstruction, tracking quality, and novel view synthesis.
arXiv Detail & Related papers (2024-03-29T07:59:37Z) - DNS SLAM: Dense Neural Semantic-Informed SLAM [92.39687553022605]
DNS SLAM is a novel neural RGB-D semantic SLAM approach featuring a hybrid representation.
Our method integrates multi-view geometry constraints with image-based feature extraction to improve appearance details.
Our experimental results achieve state-of-the-art performance on both synthetic data and real-world data tracking.
arXiv Detail & Related papers (2023-11-30T21:34:44Z) - Volume Feature Rendering for Fast Neural Radiance Field Reconstruction [11.05302598034426]
Neural radiance fields (NeRFs) are able to synthesize realistic novel views from multi-view images captured from distinct positions and perspectives.
In NeRF's rendering pipeline, neural networks are used to represent a scene independently or transform queried learnable feature vector of a point to the expected color or density.
We propose to render the queried feature vectors of a ray first and then transform the rendered feature vector to the final pixel color by a neural network.
arXiv Detail & Related papers (2023-05-29T06:58:27Z) - Neural Assets: Volumetric Object Capture and Rendering for Interactive
Environments [8.258451067861932]
We propose an approach for capturing real-world objects in everyday environments faithfully and fast.
We use a novel neural representation to reconstruct effects, such as translucent object parts, and preserve object appearance.
This leads to a seamless integration of the proposed neural assets with existing mesh environments and objects.
arXiv Detail & Related papers (2022-12-12T18:55:03Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
We propose to utilize RGBD cameras to synthesize free-viewpoint videos of dynamic indoor scenes.
We generate point clouds from RGBD frames and then render them into free-viewpoint videos via a neural feature.
We introduce a simple Regional Depth-Inpainting module that adaptively inpaints missing depth values to render complete novel views.
arXiv Detail & Related papers (2022-04-22T03:17:35Z) - NeRS: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in
the Wild [80.09093712055682]
We introduce a surface analog of implicit models called Neural Reflectance Surfaces (NeRS)
NeRS learns a neural shape representation of a closed surface that is diffeomorphic to a sphere, guaranteeing water-tight reconstructions.
We demonstrate that surface-based neural reconstructions enable learning from such data, outperforming volumetric neural rendering-based reconstructions.
arXiv Detail & Related papers (2021-10-14T17:59:58Z) - Neural Rays for Occlusion-aware Image-based Rendering [108.34004858785896]
We present a new neural representation, called Neural Ray (NeuRay), for the novel view synthesis (NVS) task with multi-view images as input.
NeuRay can quickly generate high-quality novel view rendering images of unseen scenes with little finetuning.
arXiv Detail & Related papers (2021-07-28T15:09:40Z) - Light Field Networks: Neural Scene Representations with
Single-Evaluation Rendering [60.02806355570514]
Inferring representations of 3D scenes from 2D observations is a fundamental problem of computer graphics, computer vision, and artificial intelligence.
We propose a novel neural scene representation, Light Field Networks or LFNs, which represent both geometry and appearance of the underlying 3D scene in a 360-degree, four-dimensional light field.
Rendering a ray from an LFN requires only a *single* network evaluation, as opposed to hundreds of evaluations per ray for ray-marching or based on volumetrics.
arXiv Detail & Related papers (2021-06-04T17:54:49Z) - Neural Lumigraph Rendering [33.676795978166375]
State-of-the-art (SOTA) neural volume rendering approaches are slow to train and require minutes of inference (i.e., rendering) time for high image resolutions.
We adopt high-capacity neural scene representations with periodic activations for jointly optimizing an implicit surface and a radiance field of a scene supervised exclusively with posed 2D images.
Our neural rendering pipeline accelerates SOTA neural volume rendering by about two orders of magnitude and our implicit surface representation is unique in allowing us to export a mesh with view-dependent texture information.
arXiv Detail & Related papers (2021-03-22T03:46:05Z) - NeuralHumanFVV: Real-Time Neural Volumetric Human Performance Rendering
using RGB Cameras [17.18904717379273]
4D reconstruction and rendering of human activities is critical for immersive VR/AR experience.
Recent advances still fail to recover fine geometry and texture results with the level of detail present in the input images from sparse multi-view RGB cameras.
We propose a real-time neural human performance capture and rendering system to generate both high-quality geometry and photo-realistic texture of human activities in arbitrary novel views.
arXiv Detail & Related papers (2021-03-13T12:03:38Z) - Neural Sparse Voxel Fields [151.20366604586403]
We introduce Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering.
NSVF defines a set of voxel-bounded implicit fields organized in a sparse voxel octree to model local properties in each cell.
Our method is typically over 10 times faster than the state-of-the-art (namely, NeRF(Mildenhall et al., 2020)) at inference time while achieving higher quality results.
arXiv Detail & Related papers (2020-07-22T17:51:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.