The HR-Calculus: Enabling Information Processing with Quaternion Algebra
- URL: http://arxiv.org/abs/2311.16771v2
- Date: Sat, 26 Oct 2024 19:53:20 GMT
- Title: The HR-Calculus: Enabling Information Processing with Quaternion Algebra
- Authors: Danilo P. Mandic, Sayed Pouria Talebi, Clive Cheong Took, Yili Xia, Dongpo Xu, Min Xiang, Pauline Bourigault,
- Abstract summary: quaternions and their division algebra have proven to be advantageous in modelling rotation/orientation in three-dimensional spaces.
adaptive information processing techniques specifically designed for quaternion-valued signals have only recently come to the attention of the machine learning, signal processing, and control communities.
- Score: 23.004932995116054
- License:
- Abstract: From their inception, quaternions and their division algebra have proven to be advantageous in modelling rotation/orientation in three-dimensional spaces and have seen use from the initial formulation of electromagnetic filed theory through to forming the basis of quantum filed theory. Despite their impressive versatility in modelling real-world phenomena, adaptive information processing techniques specifically designed for quaternion-valued signals have only recently come to the attention of the machine learning, signal processing, and control communities. The most important development in this direction is introduction of the HR-calculus, which provides the required mathematical foundation for deriving adaptive information processing techniques directly in the quaternion domain. In this article, the foundations of the HR-calculus are revised and the required tools for deriving adaptive learning techniques suitable for dealing with quaternion-valued signals, such as the gradient operator, chain and product derivative rules, and Taylor series expansion are presented. This serves to establish the most important applications of adaptive information processing in the quaternion domain for both single-node and multi-node formulations. The article is supported by Supplementary Material, which will be referred to as SM.
Related papers
- Convolutional Filtering with RKHS Algebras [110.06688302593349]
We develop a theory of convolutional signal processing and neural networks for Reproducing Kernel Hilbert Spaces (RKHS)
We show that any RKHS allows the formal definition of multiple algebraic convolutional models.
We present a set of numerical experiments on real data in which wireless coverage is predicted from measurements captured by unmaned aerial vehicles.
arXiv Detail & Related papers (2024-11-02T18:53:44Z) - Learning signals defined on graphs with optimal transport and Gaussian process regression [1.1062090350704616]
In computational physics, machine learning has emerged as a powerful complementary tool to explore efficiently candidate designs in engineering studies.
We propose an innovative strategy for Gaussian process regression where inputs are large and sparse graphs with continuous node attributes and outputs are signals defined on the nodes of the associated inputs.
In addition to enabling signal prediction, the main point of our proposal is to come with confidence intervals on node values, which is crucial for uncertainty and active learning.
arXiv Detail & Related papers (2024-10-21T07:39:44Z) - Symmetry Discovery for Different Data Types [52.2614860099811]
Equivariant neural networks incorporate symmetries into their architecture, achieving higher generalization performance.
We propose LieSD, a method for discovering symmetries via trained neural networks which approximate the input-output mappings of the tasks.
We validate the performance of LieSD on tasks with symmetries such as the two-body problem, the moment of inertia matrix prediction, and top quark tagging.
arXiv Detail & Related papers (2024-10-13T13:39:39Z) - Weakly supervised covariance matrices alignment through Stiefel matrices
estimation for MEG applications [64.20396555814513]
This paper introduces a novel domain adaptation technique for time series data, called Mixing model Stiefel Adaptation (MSA)
We exploit abundant unlabeled data in the target domain to ensure effective prediction by establishing pairwise correspondence with equivalent signal variances between domains.
MSA outperforms recent methods in brain-age regression with task variations using magnetoencephalography (MEG) signals from the Cam-CAN dataset.
arXiv Detail & Related papers (2024-01-24T19:04:49Z) - Geometrically Aligned Transfer Encoder for Inductive Transfer in
Regression Tasks [5.038936775643437]
We propose a novel transfer technique based on differential geometry, namely the Geometrically Aligned Transfer (GATE)
We find a proper diffeomorphism between pairs of tasks to ensure that every arbitrary point maps to a locally flat coordinate in the overlapping region, allowing the transfer of knowledge from the source to the target data.
GATE outperforms conventional methods and exhibits stable behavior in both the latent space and extrapolation regions for various molecular graph datasets.
arXiv Detail & Related papers (2023-10-10T07:11:25Z) - Convex Quaternion Optimization for Signal Processing: Theory and
Applications [18.6716071499445]
We establish an essential theory of convex quaternion optimization for signal processing based on the generalized Hamilton-real calculus.
We present five discriminant theorems for convex quaternion functions, and four discriminant criteria for strongly convex quaternion functions.
arXiv Detail & Related papers (2023-05-09T16:11:17Z) - Quaternion-based machine learning on topological quantum systems [0.0]
In this work, we incorporate quaternion algebras into data analysis to classify two-dimensional Chern insulators.
For the unsupervised-learning aspect, we apply the principal component analysis (PCA) on the quaternion-transformed eigenstates.
We construct our machine by adding one quaternion convolutional layer on top of a conventional convolutional neural network.
arXiv Detail & Related papers (2022-09-29T05:02:20Z) - On Hypothesis Transfer Learning of Functional Linear Models [8.557392136621894]
We study the transfer learning (TL) for the functional linear regression (FLR) under the Reproducing Kernel Space (RKHS) framework.
We measure the similarity across tasks using RKHS distance, allowing the type of information being transferred tied to the properties of the imposed RKHS.
Two algorithms are proposed: one conducts the transfer when positive sources are known, while the other leverages aggregation to achieve robust transfer without prior information about the sources.
arXiv Detail & Related papers (2022-06-09T04:50:16Z) - Vector-valued Gaussian Processes on Riemannian Manifolds via Gauge
Equivariant Projected Kernels [108.60991563944351]
We present a recipe for constructing gauge equivariant kernels, which induce vector-valued Gaussian processes coherent with geometry.
We extend standard Gaussian process training methods, such as variational inference, to this setting.
arXiv Detail & Related papers (2021-10-27T13:31:10Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
Prediction of a molecule's 3D conformer ensemble from the molecular graph holds a key role in areas of cheminformatics and drug discovery.
Existing generative models have several drawbacks including lack of modeling important molecular geometry elements.
We propose GeoMol, an end-to-end, non-autoregressive and SE(3)-invariant machine learning approach to generate 3D conformers.
arXiv Detail & Related papers (2021-06-08T14:17:59Z) - Quaternion Factorization Machines: A Lightweight Solution to Intricate
Feature Interaction Modelling [76.89779231460193]
factorization machine (FM) is capable of automatically learning high-order interactions among features to make predictions without the need for manual feature engineering.
We propose the quaternion factorization machine (QFM) and quaternion neural factorization machine (QNFM) for sparse predictive analytics.
arXiv Detail & Related papers (2021-04-05T00:02:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.