Adaptive Step Sizes for Preconditioned Stochastic Gradient Descent
- URL: http://arxiv.org/abs/2311.16956v2
- Date: Wed, 18 Sep 2024 15:47:10 GMT
- Title: Adaptive Step Sizes for Preconditioned Stochastic Gradient Descent
- Authors: Frederik Köhne, Leonie Kreis, Anton Schiela, Roland Herzog,
- Abstract summary: This paper proposes a novel approach to adaptive step sizes in gradient descent (SGD)
We use quantities that we have identified as numerically traceable -- the Lipschitz constant for gradients and a concept of the local variance in search directions.
- Score: 0.3831327965422187
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper proposes a novel approach to adaptive step sizes in stochastic gradient descent (SGD) by utilizing quantities that we have identified as numerically traceable -- the Lipschitz constant for gradients and a concept of the local variance in search directions. Our findings yield a nearly hyperparameter-free algorithm for stochastic optimization, which has provable convergence properties and exhibits truly problem adaptive behavior on classical image classification tasks. Our framework is set in a general Hilbert space and thus enables the potential inclusion of a preconditioner through the choice of the inner product.
Related papers
- Convergence Analysis of Adaptive Gradient Methods under Refined Smoothness and Noise Assumptions [18.47705532817026]
We show that AdaGrad outperforms SGD by a factor of $d$ under certain conditions.
Motivated by this, we introduce assumptions on the smoothness structure of the objective and the gradient variance.
arXiv Detail & Related papers (2024-06-07T02:55:57Z) - Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models
via Reparameterisation and Smoothing [1.6114012813668932]
We introduce a simple framework to define non-differentiable functions piecewisely and present a systematic approach to obtain smoothings.
Our main contribution is a novel variant of SGD, Diagonalisation Gradient Descent, which progressively enhances the accuracy of the smoothed approximation.
Our approach is simple, fast stable and attains orders of magnitude reduction in work-normalised variance.
arXiv Detail & Related papers (2024-02-19T00:43:22Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
We introduce lower bounds to the linearized Laplace approximation of the marginal likelihood.
These bounds are amenable togradient-based optimization and allow to trade off estimation accuracy against computational complexity.
arXiv Detail & Related papers (2023-06-06T19:02:57Z) - Parameter-free projected gradient descent [0.0]
We consider the problem of minimizing a convex function over a closed convex set, with Projected Gradient Descent (PGD)
We propose a fully parameter-free version of AdaGrad, which is adaptive to the distance between the initialization and the optimum, and to the sum of the square norm of the subgradients.
Our algorithm is able to handle projection steps, does not involve restarts, reweighing along the trajectory or additional evaluations compared to the classical PGD.
arXiv Detail & Related papers (2023-05-31T07:22:44Z) - The Power of Adaptivity in SGD: Self-Tuning Step Sizes with Unbounded
Gradients and Affine Variance [46.15915820243487]
We show that AdaGrad-Norm exhibits an order optimal convergence of $mathcalOleft.
We show that AdaGrad-Norm exhibits an order optimal convergence of $mathcalOleft.
arXiv Detail & Related papers (2022-02-11T17:37:54Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods [7.486132958737807]
We present an adaptive variance reduced method with an implicit approach for adaptivity.
We provide convergence guarantees for finite-sum minimization problems and show a faster convergence than SARAH can be achieved if local geometry permits.
This algorithm implicitly computes step-size and efficiently estimates local Lipschitz smoothness of functions.
arXiv Detail & Related papers (2021-02-19T01:17:15Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
Adaptive algorithms perform gradient updates using the history of gradients and are ubiquitous in training deep neural networks.
In this paper we analyze a variant of OptimisticOA algorithm for nonconcave minmax problems.
Our experiments show that adaptive GAN non-adaptive gradient algorithms can be observed empirically.
arXiv Detail & Related papers (2019-12-26T22:10:10Z) - On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization [80.03647903934723]
We prove adaptive gradient methods in expectation of gradient convergence methods.
Our analyses shed light on better adaptive gradient methods in optimizing non understanding gradient bounds.
arXiv Detail & Related papers (2018-08-16T20:25:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.