Eliciting In-Context Learning in Vision-Language Models for Videos Through Curated Data Distributional Properties
- URL: http://arxiv.org/abs/2311.17041v4
- Date: Thu, 03 Oct 2024 13:31:39 GMT
- Title: Eliciting In-Context Learning in Vision-Language Models for Videos Through Curated Data Distributional Properties
- Authors: Keunwoo Peter Yu, Zheyuan Zhang, Fengyuan Hu, Shane Storks, Joyce Chai,
- Abstract summary: We implement textbfEmergent textbfIn-context textbfLearning on textbfVideos (eilev), a novel training paradigm that induces in-context learning over video and text.
Our results, analysis, and eilev-trained models yield numerous insights about the emergence of in-context learning over video and text.
- Score: 13.938281516499119
- License:
- Abstract: A major reason behind the recent success of large language models (LLMs) is their \textit{in-context learning} capability, which makes it possible to rapidly adapt them to downstream text-based tasks by prompting them with a small number of relevant demonstrations. While large vision-language models (VLMs) have recently been developed for tasks requiring both text and images, they largely lack in-context learning over visual information, especially in understanding and generating text about videos. In this work, we implement \textbf{E}mergent \textbf{I}n-context \textbf{Le}arning on \textbf{V}ideos (\eilev{}), a novel training paradigm that induces in-context learning over video and text by capturing key properties of pre-training data found by prior work to be essential for in-context learning in transformers. In our experiments, we show that \eilev-trained models outperform other off-the-shelf VLMs in few-shot video narration for novel, rare actions. Furthermore, we demonstrate that these key properties of bursty distributions, skewed marginal distributions, and dynamic meaning each contribute to varying degrees to VLMs' in-context learning capability in narrating procedural videos. Our results, analysis, and \eilev{}-trained models yield numerous insights about the emergence of in-context learning over video and text, creating a foundation for future work to optimize and scale VLMs for open-domain video understanding and reasoning. Our code and demo are available at \url{https://github.com/yukw777/EILEV}.
Related papers
- Video-LaVIT: Unified Video-Language Pre-training with Decoupled Visual-Motional Tokenization [52.63845811751936]
Video pre-training is challenging due to the modeling of its dynamics video.
In this paper, we address such limitations in video pre-training with an efficient video decomposition.
Our framework is both capable of comprehending and generating image and video content, as demonstrated by its performance across 13 multimodal benchmarks.
arXiv Detail & Related papers (2024-02-05T16:30:49Z) - VILA: On Pre-training for Visual Language Models [74.08039416548209]
We study the design options for VLM pre-training through step-by-step controllable comparisons.
We build VILA, a Visual Language model family that consistently outperforms the state-of-the-art models.
arXiv Detail & Related papers (2023-12-12T18:58:18Z) - Vamos: Versatile Action Models for Video Understanding [23.631145570126268]
We propose versatile action models (Vamos), a learning framework powered by a large language model as the reasoner''
We evaluate Vamos on five benchmarks, Ego4D, NeXT-QA, IntentQA, Spacewalk-18, and Ego on its capability to model temporal dynamics, encode visual history, and perform reasoning.
arXiv Detail & Related papers (2023-11-22T17:44:24Z) - VidCoM: Fast Video Comprehension through Large Language Models with Multimodal Tools [44.78291853329394]
textbfVidCoM is a fast adaptive framework that leverages Large Language Models (LLMs) to reason about videos using lightweight visual tools.
An InsOVER algorithm locates the corresponding video events based on an efficient Hungarian matching between decompositions of linguistic instructions and video events.
arXiv Detail & Related papers (2023-10-16T17:05:56Z) - Towards Generalisable Video Moment Retrieval: Visual-Dynamic Injection
to Image-Text Pre-Training [70.83385449872495]
The correlation between the vision and text is essential for video moment retrieval (VMR)
Existing methods rely on separate pre-training feature extractors for visual and textual understanding.
We propose a generic method, referred to as Visual-Dynamic Injection (VDI), to empower the model's understanding of video moments.
arXiv Detail & Related papers (2023-02-28T19:29:05Z) - Visually-Augmented Language Modeling [137.36789885105642]
We propose a novel pre-training framework, named VaLM, to Visually-augment text tokens with retrieved relevant images for Language Modeling.
With the visually-augmented context, VaLM uses a visual knowledge fusion layer to enable multimodal grounded language modeling.
We evaluate the proposed model on various multimodal commonsense reasoning tasks, which require visual information to excel.
arXiv Detail & Related papers (2022-05-20T13:41:12Z) - Look Before you Speak: Visually Contextualized Utterances [88.58909442073858]
We create a task for predicting utterances in a video using both visual frames and transcribed speech as context.
By exploiting the large number of instructional videos online, we train a model to solve this task at scale, without the need for manual annotations.
Our model achieves state-of-the-art performance on a number of downstream VideoQA benchmarks.
arXiv Detail & Related papers (2020-12-10T14:47:02Z) - Watch and Learn: Mapping Language and Noisy Real-world Videos with
Self-supervision [54.73758942064708]
We teach machines to understand visuals and natural language by learning the mapping between sentences and noisy video snippets without explicit annotations.
For training and evaluation, we contribute a new dataset ApartmenTour' that contains a large number of online videos and subtitles.
arXiv Detail & Related papers (2020-11-19T03:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.