Human Gaussian Splatting: Real-time Rendering of Animatable Avatars
- URL: http://arxiv.org/abs/2311.17113v2
- Date: Thu, 28 Mar 2024 17:07:28 GMT
- Title: Human Gaussian Splatting: Real-time Rendering of Animatable Avatars
- Authors: Arthur Moreau, Jifei Song, Helisa Dhamo, Richard Shaw, Yiren Zhou, Eduardo PĂ©rez-Pellitero,
- Abstract summary: This work addresses the problem of real-time rendering of photorealistic human body avatars learned from multi-view videos.
We propose an animatable human model based on 3D Gaussian Splatting, that has recently emerged as a very efficient alternative to neural radiance fields.
Our method achieves 1.5 dB PSNR improvement over the state-of-the-art on THuman4 dataset while being able to render in real-time (80 fps for 512x512 resolution)
- Score: 8.719797382786464
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work addresses the problem of real-time rendering of photorealistic human body avatars learned from multi-view videos. While the classical approaches to model and render virtual humans generally use a textured mesh, recent research has developed neural body representations that achieve impressive visual quality. However, these models are difficult to render in real-time and their quality degrades when the character is animated with body poses different than the training observations. We propose an animatable human model based on 3D Gaussian Splatting, that has recently emerged as a very efficient alternative to neural radiance fields. The body is represented by a set of gaussian primitives in a canonical space which is deformed with a coarse to fine approach that combines forward skinning and local non-rigid refinement. We describe how to learn our Human Gaussian Splatting (HuGS) model in an end-to-end fashion from multi-view observations, and evaluate it against the state-of-the-art approaches for novel pose synthesis of clothed body. Our method achieves 1.5 dB PSNR improvement over the state-of-the-art on THuman4 dataset while being able to render in real-time (80 fps for 512x512 resolution).
Related papers
- UV Gaussians: Joint Learning of Mesh Deformation and Gaussian Textures for Human Avatar Modeling [71.87807614875497]
We propose UV Gaussians, which models the 3D human body by jointly learning mesh deformations and 2D UV-space Gaussian textures.
We collect and process a new dataset of human motion, which includes multi-view images, scanned models, parametric model registration, and corresponding texture maps. Experimental results demonstrate that our method achieves state-of-the-art synthesis of novel view and novel pose.
arXiv Detail & Related papers (2024-03-18T09:03:56Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
We propose a fully explicit approach to construct a digital avatar from as little as a single monocular sequence.
ParDy-Human constitutes an explicit model for realistic dynamic human avatars which requires significantly fewer training views and images.
Our avatars learning is free of additional annotations such as Splat masks and can be trained with variable backgrounds while inferring full-resolution images efficiently even on consumer hardware.
arXiv Detail & Related papers (2023-12-22T20:56:46Z) - Animatable 3D Gaussian: Fast and High-Quality Reconstruction of Multiple Human Avatars [18.55354901614876]
We propose Animatable 3D Gaussian, which learns human avatars from input images and poses.
On both novel view synthesis and novel pose synthesis tasks, our method achieves higher reconstruction quality than InstantAvatar with less training time.
Our method can be easily extended to multi-human scenes and achieve comparable novel view synthesis results on a scene with ten people in only 25 seconds of training.
arXiv Detail & Related papers (2023-11-27T08:17:09Z) - DINAR: Diffusion Inpainting of Neural Textures for One-Shot Human
Avatars [7.777410338143783]
We present an approach for creating realistic rigged fullbody avatars from single RGB images.
Our method uses neural textures combined with the SMPL-X body model to achieve photo-realistic quality of avatars.
In the experiments, our approach achieves state-of-the-art rendering quality and good generalization to new poses and viewpoints.
arXiv Detail & Related papers (2023-03-16T15:04:10Z) - Neural Novel Actor: Learning a Generalized Animatable Neural
Representation for Human Actors [98.24047528960406]
We propose a new method for learning a generalized animatable neural representation from a sparse set of multi-view imagery of multiple persons.
The learned representation can be used to synthesize novel view images of an arbitrary person from a sparse set of cameras, and further animate them with the user's pose control.
arXiv Detail & Related papers (2022-08-25T07:36:46Z) - AvatarGen: a 3D Generative Model for Animatable Human Avatars [108.11137221845352]
AvatarGen is the first method that enables not only non-rigid human generation with diverse appearance but also full control over poses and viewpoints.
To model non-rigid dynamics, it introduces a deformation network to learn pose-dependent deformations in the canonical space.
Our method can generate animatable human avatars with high-quality appearance and geometry modeling, significantly outperforming previous 3D GANs.
arXiv Detail & Related papers (2022-08-01T01:27:02Z) - Animatable Neural Radiance Fields from Monocular RGB Video [72.6101766407013]
We present animatable neural radiance fields for detailed human avatar creation from monocular videos.
Our approach extends neural radiance fields to the dynamic scenes with human movements via introducing explicit pose-guided deformation.
In experiments we show that the proposed approach achieves 1) implicit human geometry and appearance reconstruction with high-quality details, 2) photo-realistic rendering of the human from arbitrary views, and 3) animation of the human with arbitrary poses.
arXiv Detail & Related papers (2021-06-25T13:32:23Z) - Neural Actor: Neural Free-view Synthesis of Human Actors with Pose
Control [80.79820002330457]
We propose a new method for high-quality synthesis of humans from arbitrary viewpoints and under arbitrary controllable poses.
Our method achieves better quality than the state-of-the-arts on playback as well as novel pose synthesis, and can even generalize well to new poses that starkly differ from the training poses.
arXiv Detail & Related papers (2021-06-03T17:40:48Z) - Learning Compositional Radiance Fields of Dynamic Human Heads [13.272666180264485]
We propose a novel compositional 3D representation that combines the best of previous methods to produce both higher-resolution and faster results.
Differentiable volume rendering is employed to compute photo-realistic novel views of the human head and upper body.
Our approach achieves state-of-the-art results for synthesizing novel views of dynamic human heads and the upper body.
arXiv Detail & Related papers (2020-12-17T22:19:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.