Deep Regularized Compound Gaussian Network for Solving Linear Inverse Problems
- URL: http://arxiv.org/abs/2311.17248v3
- Date: Mon, 18 Mar 2024 15:35:52 GMT
- Title: Deep Regularized Compound Gaussian Network for Solving Linear Inverse Problems
- Authors: Carter Lyons, Raghu G. Raj, Margaret Cheney,
- Abstract summary: We devise two novel approaches for linear inverse problems that permit problem-specific statistical prior selections.
The first method is an iterative algorithm that minimizes a regularized least squares objective function.
The second method is a novel deep regularized (DR) neural network, called DR-CG-Net, that learns the prior information.
- Score: 1.283555556182245
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Incorporating prior information into inverse problems, e.g. via maximum-a-posteriori estimation, is an important technique for facilitating robust inverse problem solutions. In this paper, we devise two novel approaches for linear inverse problems that permit problem-specific statistical prior selections within the compound Gaussian (CG) class of distributions. The CG class subsumes many commonly used priors in signal and image reconstruction methods including those of sparsity-based approaches. The first method developed is an iterative algorithm, called generalized compound Gaussian least squares (G-CG-LS), that minimizes a regularized least squares objective function where the regularization enforces a CG prior. G-CG-LS is then unrolled, or unfolded, to furnish our second method, which is a novel deep regularized (DR) neural network, called DR-CG-Net, that learns the prior information. A detailed computational theory on convergence properties of G-CG-LS and thorough numerical experiments for DR-CG-Net are provided. Due to the comprehensive nature of the CG prior, these experiments show that DR-CG-Net outperforms competitive prior art methods in tomographic imaging and compressive sensing, especially in challenging low-training scenarios.
Related papers
- Convergence of Implicit Gradient Descent for Training Two-Layer Physics-Informed Neural Networks [3.680127959836384]
implicit gradient descent (IGD) outperforms the common gradient descent (GD) in handling certain multi-scale problems.
We show that IGD converges a globally optimal solution at a linear convergence rate.
arXiv Detail & Related papers (2024-07-03T06:10:41Z) - A Compound Gaussian Least Squares Algorithm and Unrolled Network for
Linear Inverse Problems [1.283555556182245]
This paper develops two new approaches to solving linear inverse problems.
The first is an iterative algorithm that minimizes a regularized least squares objective function.
The second is a deep neural network that corresponds to an "unrolling" or "unfolding" of the iterative algorithm.
arXiv Detail & Related papers (2023-05-18T17:05:09Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
We study the generalization behavior of shallow neural networks (SNNs) by leveraging the concept of algorithmic stability.
We consider gradient descent (GD) and gradient descent (SGD) to train SNNs, for both of which we develop consistent excess bounds.
arXiv Detail & Related papers (2022-09-19T18:48:00Z) - Regularized Training of Intermediate Layers for Generative Models for
Inverse Problems [9.577509224534323]
We introduce a principle that if a generative model is intended for inversion using an algorithm based on optimization of intermediate layers, it should be trained in a way that regularizes those intermediate layers.
We instantiate this principle for two notable recent inversion algorithms: Intermediate Layer Optimization and the Multi-Code GAN prior.
For both of these inversion algorithms, we introduce a new regularized GAN training algorithm and demonstrate that the learned generative model results in lower reconstruction errors across a wide range of under sampling ratios.
arXiv Detail & Related papers (2022-03-08T20:30:49Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z) - Training Generative Adversarial Networks with Adaptive Composite
Gradient [2.471982349512685]
This paper proposes the adaptive Composite Gradients (ACG) method, linearly convergent in bilinear games.
ACG is a semi-gradient-free algorithm since it does not need to calculate the gradient of each step.
Results show ACG is competitive with the previous algorithms.
arXiv Detail & Related papers (2021-11-10T03:13:53Z) - Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks [83.58049517083138]
We consider a two-layer ReLU network trained via gradient descent.
We show that SGD is biased towards a simple solution.
We also provide empirical evidence that knots at locations distinct from the data points might occur.
arXiv Detail & Related papers (2021-11-03T15:14:20Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Convergence Analysis of Homotopy-SGD for non-convex optimization [43.71213126039448]
We present a first-order algorithm based on a combination of homotopy methods and SGD, called Gradienty-Stoch Descent (H-SGD)
Under some assumptions, we conduct a theoretical analysis of the proposed problem.
Experimental results show that H-SGD can outperform SGD.
arXiv Detail & Related papers (2020-11-20T09:50:40Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.