Alternate Diverse Teaching for Semi-supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2311.17325v2
- Date: Fri, 12 Jul 2024 11:23:31 GMT
- Title: Alternate Diverse Teaching for Semi-supervised Medical Image Segmentation
- Authors: Zhen Zhao, Zicheng Wang, Longyue Wang, Dian Yu, Yixuan Yuan, Luping Zhou,
- Abstract summary: We propose AD-MT, an alternate diverse teaching approach in a teacher-student framework.
It involves a single student model and two non-trainable teacher models that are momentum-updated periodically and randomly in an alternate fashion.
- Score: 62.021828104757745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised medical image segmentation studies have shown promise in training models with limited labeled data. However, current dominant teacher-student based approaches can suffer from the confirmation bias. To address this challenge, we propose AD-MT, an alternate diverse teaching approach in a teacher-student framework. It involves a single student model and two non-trainable teacher models that are momentum-updated periodically and randomly in an alternate fashion. To mitigate the confirmation bias from the diverse supervision, the core of AD-MT lies in two proposed modules: the Random Periodic Alternate (RPA) Updating Module and the Conflict-Combating Module (CCM). The RPA schedules the alternating diverse updating process with complementary data batches, distinct data augmentation, and random switching periods to encourage diverse reasoning from different teaching perspectives. The CCM employs an entropy-based ensembling strategy to encourage the model to learn from both the consistent and conflicting predictions between the teachers. Experimental results demonstrate the effectiveness and superiority of our AD-MT on the 2D and 3D medical segmentation benchmarks across various semi-supervised settings.
Related papers
- Dual-Teacher Ensemble Models with Double-Copy-Paste for 3D Semi-Supervised Medical Image Segmentation [31.460549289419923]
Semi-supervised learning (SSL) techniques address the high labeling costs in 3D medical image segmentation.
We introduce the Staged Selective Ensemble (SSE) module, which selects different ensemble methods based on the characteristics of the samples.
Experimental results demonstrate the effectiveness of our proposed method in 3D medical image segmentation tasks.
arXiv Detail & Related papers (2024-10-15T11:23:15Z) - Speculative Knowledge Distillation: Bridging the Teacher-Student Gap Through Interleaved Sampling [81.00825302340984]
We introduce Speculative Knowledge Distillation (SKD) to generate high-quality training data on-the-fly.
In SKD, the student proposes tokens, and the teacher replaces poorly ranked ones based on its own distribution.
We evaluate SKD on various text generation tasks, including translation, summarization, math, and instruction following.
arXiv Detail & Related papers (2024-10-15T06:51:25Z) - Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
Knowledge distillation (KD) is a technique that compresses large teacher models by training smaller student models to mimic them.
This paper introduces Online Knowledge Distillation (OKD), where the teacher network integrates small online modules to concurrently train with the student model.
OKD achieves or exceeds the performance of leading methods in various model architectures and sizes, reducing training time by up to fourfold.
arXiv Detail & Related papers (2024-09-19T07:05:26Z) - PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Multi Teacher Privileged Knowledge Distillation for Multimodal Expression Recognition [58.41784639847413]
Human emotion is a complex phenomenon conveyed and perceived through facial expressions, vocal tones, body language, and physiological signals.
In this paper, a multi-teacher PKD (MT-PKDOT) method with self-distillation is introduced to align diverse teacher representations before distilling them to the student.
Results indicate that our proposed method can outperform SOTA PKD methods.
arXiv Detail & Related papers (2024-08-16T22:11:01Z) - Multi-rater Prompting for Ambiguous Medical Image Segmentation [12.452584289825849]
Multi-rater annotations commonly occur when medical images are independently annotated by multiple experts (raters)
We propose a multi-rater prompt-based approach to address these two challenges altogether.
arXiv Detail & Related papers (2024-04-11T09:13:50Z) - Periodically Exchange Teacher-Student for Source-Free Object Detection [7.222926042027062]
Source-free object detection (SFOD) aims to adapt the source detector to unlabeled target domain data in the absence of source domain data.
Most SFOD methods follow the same self-training paradigm using mean-teacher (MT) framework where the student model is guided by only one single teacher model.
We propose the Periodically Exchange Teacher-Student (PETS) method, a simple yet novel approach that introduces a multiple-teacher framework consisting of a static teacher, a dynamic teacher, and a student model.
arXiv Detail & Related papers (2023-11-23T11:30:54Z) - Competitive Ensembling Teacher-Student Framework for Semi-Supervised
Left Atrium MRI Segmentation [8.338801567668233]
Semi-supervised learning has greatly advanced medical image segmentation since it effectively alleviates the need of acquiring abundant annotations from experts.
In this paper, we present a simple yet efficient competitive ensembling teacher student framework for semi-supervised for left atrium segmentation from 3D MR images.
arXiv Detail & Related papers (2023-10-21T09:23:34Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.