GNNFlow: A Distributed Framework for Continuous Temporal GNN Learning on
Dynamic Graphs
- URL: http://arxiv.org/abs/2311.17410v2
- Date: Thu, 30 Nov 2023 03:48:24 GMT
- Title: GNNFlow: A Distributed Framework for Continuous Temporal GNN Learning on
Dynamic Graphs
- Authors: Yuchen Zhong, Guangming Sheng, Tianzuo Qin, Minjie Wang, Quan Gan, and
Chuan Wu
- Abstract summary: We introduce GNNFlow, a distributed framework for efficient continuous temporal graph representation learning.
GNNFlow supports distributed training across multiple machines with static scheduling to ensure load balance.
Our experimental results show that GNNFlow provides up to 21.1x faster continuous learning than existing systems.
- Score: 11.302970701867844
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) play a crucial role in various fields. However,
most existing deep graph learning frameworks assume pre-stored static graphs
and do not support training on graph streams. In contrast, many real-world
graphs are dynamic and contain time domain information. We introduce GNNFlow, a
distributed framework that enables efficient continuous temporal graph
representation learning on dynamic graphs on multi-GPU machines. GNNFlow
introduces an adaptive time-indexed block-based data structure that effectively
balances memory usage with graph update and sampling operation efficiency. It
features a hybrid GPU-CPU graph data placement for rapid GPU-based temporal
neighborhood sampling and kernel optimizations for enhanced sampling processes.
A dynamic GPU cache for node and edge features is developed to maximize cache
hit rates through reuse and restoration strategies. GNNFlow supports
distributed training across multiple machines with static scheduling to ensure
load balance. We implement GNNFlow based on DGL and PyTorch. Our experimental
results show that GNNFlow provides up to 21.1x faster continuous learning than
existing systems.
Related papers
- D3-GNN: Dynamic Distributed Dataflow for Streaming Graph Neural Networks [2.3283463706065763]
Graph Neural Network (GNN) models on streaming graphs entail algorithmic challenges to continuously capture its dynamic state.
We present D3-GNN, the first distributed, hybrid-parallel, streaming GNN system designed to handle real-time graph updates under online query setting.
arXiv Detail & Related papers (2024-09-10T11:00:43Z) - DGC: Training Dynamic Graphs with Spatio-Temporal Non-Uniformity using
Graph Partitioning by Chunks [13.279145021338534]
Dynamic Graph Neural Network (DGNN) has shown a strong capability of learning dynamic graphs by exploiting both spatial and temporal features.
We propose DGC, a distributed DGNN training system that achieves a 1.25x - 7.52x speedup over the state-of-the-art in our testbed.
arXiv Detail & Related papers (2023-09-07T07:12:59Z) - Communication-Free Distributed GNN Training with Vertex Cut [63.22674903170953]
CoFree-GNN is a novel distributed GNN training framework that significantly speeds up the training process by implementing communication-free training.
We demonstrate that CoFree-GNN speeds up the GNN training process by up to 10 times over the existing state-of-the-art GNN training approaches.
arXiv Detail & Related papers (2023-08-06T21:04:58Z) - Temporal Aggregation and Propagation Graph Neural Networks for Dynamic
Representation [67.26422477327179]
Temporal graphs exhibit dynamic interactions between nodes over continuous time.
We propose a novel method of temporal graph convolution with the whole neighborhood.
Our proposed TAP-GNN outperforms existing temporal graph methods by a large margin in terms of both predictive performance and online inference latency.
arXiv Detail & Related papers (2023-04-15T08:17:18Z) - Towards Real-Time Temporal Graph Learning [10.647431919265346]
We propose an end-to-end graph learning pipeline that performs temporal graph construction, creates low-dimensional node embeddings, and trains neural network models in an online setting.
arXiv Detail & Related papers (2022-10-08T22:14:31Z) - Instant Graph Neural Networks for Dynamic Graphs [18.916632816065935]
We propose Instant Graph Neural Network (InstantGNN), an incremental approach for the graph representation matrix of dynamic graphs.
Our method avoids time-consuming, repetitive computations and allows instant updates on the representation and instant predictions.
Our model achieves state-of-the-art accuracy while having orders-of-magnitude higher efficiency than existing methods.
arXiv Detail & Related papers (2022-06-03T03:27:42Z) - Neural Graph Matching for Pre-training Graph Neural Networks [72.32801428070749]
Graph neural networks (GNNs) have been shown powerful capacity at modeling structural data.
We present a novel Graph Matching based GNN Pre-Training framework, called GMPT.
The proposed method can be applied to fully self-supervised pre-training and coarse-grained supervised pre-training.
arXiv Detail & Related papers (2022-03-03T09:53:53Z) - BGL: GPU-Efficient GNN Training by Optimizing Graph Data I/O and
Preprocessing [0.0]
Graph neural networks (GNNs) have extended the success of deep neural networks (DNNs) to non-Euclidean graph data.
Existing systems are inefficient to train large graphs with billions of nodes and edges with GPUs.
This paper proposes BGL, a distributed GNN training system designed to address the bottlenecks with a few key ideas.
arXiv Detail & Related papers (2021-12-16T00:37:37Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Scaling Graph Neural Networks with Approximate PageRank [64.92311737049054]
We present the PPRGo model which utilizes an efficient approximation of information diffusion in GNNs.
In addition to being faster, PPRGo is inherently scalable, and can be trivially parallelized for large datasets like those found in industry settings.
We show that training PPRGo and predicting labels for all nodes in this graph takes under 2 minutes on a single machine, far outpacing other baselines on the same graph.
arXiv Detail & Related papers (2020-07-03T09:30:07Z) - Fast Graph Attention Networks Using Effective Resistance Based Graph
Sparsification [70.50751397870972]
FastGAT is a method to make attention based GNNs lightweight by using spectral sparsification to generate an optimal pruning of the input graph.
We experimentally evaluate FastGAT on several large real world graph datasets for node classification tasks.
arXiv Detail & Related papers (2020-06-15T22:07:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.