SpeechAct: Towards Generating Whole-body Motion from Speech
- URL: http://arxiv.org/abs/2311.17425v4
- Date: Fri, 14 Jun 2024 02:28:05 GMT
- Title: SpeechAct: Towards Generating Whole-body Motion from Speech
- Authors: Jinsong Zhang, Minjie Zhu, Yuxiang Zhang, Yebin Liu, Kun Li,
- Abstract summary: This paper addresses the problem of generating whole-body motion from speech.
We present a novel hybrid point representation to achieve accurate and continuous motion generation.
We also propose a contrastive motion learning method to encourage the model to produce more distinctive representations.
- Score: 33.10601371020488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of generating whole-body motion from speech. Despite great successes, prior methods still struggle to produce reasonable and diverse whole-body motions from speech. This is due to their reliance on suboptimal representations and a lack of strategies for generating diverse results. To address these challenges, we present a novel hybrid point representation to achieve accurate and continuous motion generation, e.g., avoiding foot skating, and this representation can be transformed into an easy-to-use representation, i.e., SMPL-X body mesh, for many applications. To generate whole-body motion from speech, for facial motion, closely tied to the audio signal, we introduce an encoder-decoder architecture to achieve deterministic outcomes. However, for the body and hands, which have weaker connections to the audio signal, we aim to generate diverse yet reasonable motions. To boost diversity in motion generation, we propose a contrastive motion learning method to encourage the model to produce more distinctive representations. Specifically, we design a robust VQ-VAE to learn a quantized motion codebook using our hybrid representation. Then, we regress the motion representation from the audio signal by a translation model employing our contrastive motion learning method. Experimental results validate the superior performance and the correctness of our model. The project page is available for research purposes at http://cic.tju.edu.cn/faculty/likun/projects/SpeechAct.
Related papers
- Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speech Affective Face and Body Expressions from Affordable Inputs [67.27840327499625]
We present a multimodal learning-based method to simultaneously synthesize co-speech facial expressions and upper-body gestures for digital characters.
Our approach learns from sparse face landmarks and upper-body joints, estimated directly from video data, to generate plausible emotive character motions.
arXiv Detail & Related papers (2024-06-26T04:53:11Z) - Co-Speech Gesture Video Generation via Motion-Decoupled Diffusion Model [17.98911328064481]
Co-speech gestures can achieve superior visual effects in human-machine interaction.
We present a novel motion-decoupled framework to generate co-speech gesture videos.
Our proposed framework significantly outperforms existing approaches in both motion and video-related evaluations.
arXiv Detail & Related papers (2024-04-02T11:40:34Z) - From Audio to Photoreal Embodiment: Synthesizing Humans in Conversations [107.88375243135579]
Given speech audio, we output multiple possibilities of gestural motion for an individual, including face, body, and hands.
We visualize the generated motion using highly photorealistic avatars that can express crucial nuances in gestures.
Experiments show our model generates appropriate and diverse gestures, outperforming both diffusion- and VQ-only methods.
arXiv Detail & Related papers (2024-01-03T18:55:16Z) - Generating Holistic 3D Human Motion from Speech [97.11392166257791]
We build a high-quality dataset of 3D holistic body meshes with synchronous speech.
We then define a novel speech-to-motion generation framework in which the face, body, and hands are modeled separately.
arXiv Detail & Related papers (2022-12-08T17:25:19Z) - Audio-Driven Co-Speech Gesture Video Generation [92.15661971086746]
We define and study this challenging problem of audio-driven co-speech gesture video generation.
Our key insight is that the co-speech gestures can be decomposed into common motion patterns and subtle rhythmic dynamics.
We propose a novel framework, Audio-driveN Gesture vIdeo gEneration (ANGIE), to effectively capture the reusable co-speech gesture patterns.
arXiv Detail & Related papers (2022-12-05T15:28:22Z) - Listen, Denoise, Action! Audio-Driven Motion Synthesis with Diffusion
Models [22.000197530493445]
We show that diffusion models are an excellent fit for synthesising human motion that co-occurs with audio.
We adapt the DiffWave architecture to model 3D pose sequences, putting Conformers in place of dilated convolutions for improved modelling power.
Experiments on gesture and dance generation confirm that the proposed method achieves top-of-the-line motion quality.
arXiv Detail & Related papers (2022-11-17T17:41:00Z) - MotionDiffuse: Text-Driven Human Motion Generation with Diffusion Model [35.32967411186489]
MotionDiffuse is a diffusion model-based text-driven motion generation framework.
It excels at modeling complicated data distribution and generating vivid motion sequences.
It responds to fine-grained instructions on body parts, and arbitrary-length motion synthesis with time-varied text prompts.
arXiv Detail & Related papers (2022-08-31T17:58:54Z) - Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion [89.01668641930206]
We present a framework for modeling interactional communication in dyadic conversations.
We autoregressively output multiple possibilities of corresponding listener motion.
Our method organically captures the multimodal and non-deterministic nature of nonverbal dyadic interactions.
arXiv Detail & Related papers (2022-04-18T17:58:04Z) - Freeform Body Motion Generation from Speech [53.50388964591343]
Body motion generation from speech is inherently difficult due to the non-deterministic mapping from speech to body motions.
We introduce a novel freeform motion generation model (FreeMo) by equipping a two-stream architecture.
Experiments demonstrate the superior performance against several baselines.
arXiv Detail & Related papers (2022-03-04T13:03:22Z) - Audio2Gestures: Generating Diverse Gestures from Speech Audio with
Conditional Variational Autoencoders [29.658535633701035]
We propose a novel conditional variational autoencoder (VAE) that explicitly models one-to-many audio-to-motion mapping.
We show that our method generates more realistic and diverse motions than state-of-the-art methods, quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-15T11:15:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.