DifFlow3D: Toward Robust Uncertainty-Aware Scene Flow Estimation with Diffusion Model
- URL: http://arxiv.org/abs/2311.17456v4
- Date: Fri, 10 May 2024 07:13:45 GMT
- Title: DifFlow3D: Toward Robust Uncertainty-Aware Scene Flow Estimation with Diffusion Model
- Authors: Jiuming Liu, Guangming Wang, Weicai Ye, Chaokang Jiang, Jinru Han, Zhe Liu, Guofeng Zhang, Dalong Du, Hesheng Wang,
- Abstract summary: We propose a novel uncertainty-aware scene flow estimation network (DifFlow3D) with the diffusion probabilistic model.
Our method achieves an unprecedented millimeter-level accuracy (0.0078m in EPE3D) on the KITTI dataset.
- Score: 20.15214479105187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Scene flow estimation, which aims to predict per-point 3D displacements of dynamic scenes, is a fundamental task in the computer vision field. However, previous works commonly suffer from unreliable correlation caused by locally constrained searching ranges, and struggle with accumulated inaccuracy arising from the coarse-to-fine structure. To alleviate these problems, we propose a novel uncertainty-aware scene flow estimation network (DifFlow3D) with the diffusion probabilistic model. Iterative diffusion-based refinement is designed to enhance the correlation robustness and resilience to challenging cases, e.g. dynamics, noisy inputs, repetitive patterns, etc. To restrain the generation diversity, three key flow-related features are leveraged as conditions in our diffusion model. Furthermore, we also develop an uncertainty estimation module within diffusion to evaluate the reliability of estimated scene flow. Our DifFlow3D achieves state-of-the-art performance, with 24.0% and 29.1% EPE3D reduction respectively on FlyingThings3D and KITTI 2015 datasets. Notably, our method achieves an unprecedented millimeter-level accuracy (0.0078m in EPE3D) on the KITTI dataset. Additionally, our diffusion-based refinement paradigm can be readily integrated as a plug-and-play module into existing scene flow networks, significantly increasing their estimation accuracy. Codes are released at https://github.com/IRMVLab/DifFlow3D.
Related papers
- OccLoff: Learning Optimized Feature Fusion for 3D Occupancy Prediction [5.285847977231642]
3D semantic occupancy prediction is crucial for ensuring the safety in autonomous driving.
Existing fusion-based occupancy methods typically involve performing a 2D-to-3D view transformation on image features.
We propose OccLoff, a framework that Learns to optimize Feature Fusion for 3D occupancy prediction.
arXiv Detail & Related papers (2024-11-06T06:34:27Z) - Digging into contrastive learning for robust depth estimation with diffusion models [55.62276027922499]
We propose a novel robust depth estimation method called D4RD.
It features a custom contrastive learning mode tailored for diffusion models to mitigate performance degradation in complex environments.
In experiments, D4RD surpasses existing state-of-the-art solutions on synthetic corruption datasets and real-world weather conditions.
arXiv Detail & Related papers (2024-04-15T14:29:47Z) - Addressing Concept Shift in Online Time Series Forecasting: Detect-then-Adapt [37.98336090671441]
Concept textbfDrift textbfDetection antextbfD textbfAdaptation (D3A)
It first detects drifting conception and then aggressively adapts the current model to the drifted concepts after the detection for rapid adaption.
It helps mitigate the data distribution gap, a critical factor contributing to train-test performance inconsistency.
arXiv Detail & Related papers (2024-03-22T04:44:43Z) - DiffSF: Diffusion Models for Scene Flow Estimation [17.512660491303684]
We propose DiffSF that combines transformer-based scene flow estimation with denoising diffusion models.
We show that the diffusion process greatly increases the robustness of predictions compared to prior approaches.
By sampling multiple times with different initial states, the denoising process predicts multiple hypotheses, which enables measuring the output uncertainty.
arXiv Detail & Related papers (2024-03-08T14:06:15Z) - DF2: Distribution-Free Decision-Focused Learning [53.2476224456902]
Decision-focused learning (DFL) has recently emerged as a powerful approach for predictthen-optimize problems.
Existing end-to-end DFL methods are hindered by three significant bottlenecks: model error, sample average approximation error, and distribution-based parameterization of the expected objective.
We present DF2 -- the first textit-free decision-focused learning method explicitly designed to address these three bottlenecks.
arXiv Detail & Related papers (2023-08-11T00:44:46Z) - The Surprising Effectiveness of Diffusion Models for Optical Flow and
Monocular Depth Estimation [42.48819460873482]
Denoising diffusion probabilistic models have transformed image generation with their impressive fidelity and diversity.
We show that they also excel in estimating optical flow and monocular depth, surprisingly, without task-specific architectures and loss functions.
arXiv Detail & Related papers (2023-06-02T21:26:20Z) - DistractFlow: Improving Optical Flow Estimation via Realistic
Distractions and Pseudo-Labeling [49.46842536813477]
We propose a novel data augmentation approach, DistractFlow, for training optical flow estimation models.
We combine one of the frames in the pair with a distractor image depicting a similar domain, which allows for inducing visual perturbations congruent with natural objects and scenes.
Our approach allows increasing the number of available training pairs significantly without requiring additional annotations.
arXiv Detail & Related papers (2023-03-24T15:42:54Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
Enhanced Probabilistic Dense Correspondence Network, PDC-Net+, capable of estimating accurate dense correspondences.
We develop an architecture and an enhanced training strategy tailored for robust and generalizable uncertainty prediction.
Our approach obtains state-of-the-art results on multiple challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-09-28T17:56:41Z) - Consistency Guided Scene Flow Estimation [159.24395181068218]
CGSF is a self-supervised framework for the joint reconstruction of 3D scene structure and motion from stereo video.
We show that the proposed model can reliably predict disparity and scene flow in challenging imagery.
It achieves better generalization than the state-of-the-art, and adapts quickly and robustly to unseen domains.
arXiv Detail & Related papers (2020-06-19T17:28:07Z) - SoftFlow: Probabilistic Framework for Normalizing Flow on Manifolds [15.476426879806134]
Flow-based generative models are composed of invertible transformations between two random variables of the same dimension.
In this paper, we propose SoftFlow, a probabilistic framework for training normalizing flows on manifold.
We experimentally show that SoftFlow can capture the innate structure of the manifold data and generate high-quality samples.
We apply the proposed framework to 3D point clouds to alleviate the difficulty of forming thin structures for flow-based models.
arXiv Detail & Related papers (2020-06-08T13:56:07Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.